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Abstract

This paper proposes a methodology to develop coun-
termeasures against code injection attacks, and validates
the methodology by working out a specific countermeasure.
This methodology is based on modeling the execution envi-
ronment of a program. Such a model is then used to build
countermeasures. The paper justifies the need for a more
structured approach to protect programs against code injec-
tion attacks: we examine advanced techniques for injecting
code into C and C++ programs and we discuss state-of-
the-art (often ad hoc) approaches that typically protect sin-
gular memory locations. We validate our methodology by
building countermeasures that prevent attacks by protect-
ing a broad variety of memory locations that may be used
by attackers to perform code injections. The paper evalu-
ates our approach and discusses ongoing and future work.

Keywords: Advanced exploitation techniques, buffer over-
flows, C, C++, code injection, countermeasures

1 Introduction

Standard stack-based buffer overflows, where an attacker
overwrites the return address on the stack by writing out-
side the bounds of an array, have become a well-understood
problem and many programmers are producing code that
is more resilient towards buffer overflows or are apply-
ing countermeasures that make using standard exploitation
techniques harder. As a result, attackers are turning to more
sophisticated techniques (e.g. indirect attacks) and are us-
ing new vulnerabilities to inject code into a program. These
trends demonstrate the need for a more structured approach
when building attack prevention countermeasures.

The memory locations that are generally abused by at-
tackers to gain control over the execution flow of a program

usually contain the abstractions that the run-time environ-
ment relies on to execute the program. Therefore we should
strive to protect the entire execution environment from at-
tacks. In this paper we will discuss an approach to protect
the run-time environment. We have defined a model of the
run-time environment of the program for the Intel Architec-
ture for 32-bit [18] with GNU/Linux as the operating sys-
tem and the GNU Compiler Collection [17] as the compiler
for the languages C and C++. This model was then used
to assess which memory locations besides the traditional
return address could be attacked. The advantage of using
such models to design countermeasures is that a counter-
measure designer can work at a higher level of abstraction
which reduces the effort needed to define and evaluate a
specific countermeasure. Such a model will also allow us to
compare the effectiveness of countermeasures more easily,
allowing one to select a countermeasure that better suits a
particular context.

The rest of the paper is structured as follows: section
2 discusses the advanced techniques besides stack-based
buffer overflows that are being used to attack programs.
Section 3 describes the countermeasures we built using our
methodology and describes the approach taken when build-
ing the machine model. Section 4 discusses our approach
and describes our future work, while section 5 examines
existing countermeasures. Finally, section 6 presents our
conclusion.

2 Advanced exploitation techniques

This section covers some more advanced techniques
used by attackers to inject code into an application. We
describe them here in detail as they are important to demon-
strate how they can be used to bypass countermeasures.
This demonstrates the need for the more methodical ap-
proach that we describe in section 3. We have divided the
attacks in different subcategories, we start by describing in-



direct attacks in section 2.1. These require an intermediate
step to be exploited (e.g. overwriting a data pointer to a
different memory location). In section 2.2 we discuss regu-
lar buffer overflows in the data and bss sections of memory,
which also require an attack technique different from the
one used for regular stack-based overflows. Finally, section
2.3 describes format string vulnerabilities and how they can
be used by attackers to perform code injection attacks.

As we do for the machine model and countermea-
sures of section 3, we focus on the IA32 architecture with
GNU/Linux as operating system and the GNU Compiler
Collection as compiler for illustrating the attack techniques
in this section. As such, all pointers and integer memory
locations that are mentioned here are four bytes large.

2.1 Indirect attacks

Indirect attacks are attacks where the attackers do not
or can not reach their objective immediately (i.e. gaining
control over the execution-flow) but need an intermediate
step to achieve their goals. This intermediate step usually
manifests itself in the overwriting of the memory location
that some pointer refers to with the target memory location.
When the pointer is later dereferenced for writing, the target
location will be overwritten. This type of attack can be fur-
ther divided into several subcategories. In section 2.1.1 we
describe indirect pointer overwriting, where a data pointer
is modified by a buffer overflow and made to point to a dif-
ferent location. Section 2.1.2 discusses a closely related at-
tack: a heap-based buffer overflow is used to overwrite the
memory management information of the dynamic memory
allocator, which in turn can be used to overwrite arbitrary
memory locations. Section 2.1.3 describes another indirect
attack on the dynamic memory allocator, when memory is
deallocated multiple times, attackers could again overwrite
the memory management information, resulting in the over-
writing of arbitrary memory locations. Integer errors, dis-
cussed in section 2.1.4 are a different kind of vulnerability:
they are not exploitable by themselves but could result in a
buffer overflow.

2.1.1 Indirect Pointer Overwriting

If the return address on the stack is protected by a coun-
termeasure (like StackGuard [13], which places a random
value before the return address and on return checks if the
random value is unchanged), an attacker still might be able
to exploit a stack-based buffer overflow vulnerability by us-
ing indirect pointer overwriting [10]. The attacker over-
writes a data pointer to which attacker-controlled data will
be written (e.g., a copy of a user-inputted string) and makes
it point to the target memory location. When the pointer

is later dereferenced for writing, it will overwrite the target
memory location. This technique is illustrated in Figure 1.

The overflow is used to overwrite a local variable off1
holding the pointer tovalue1. The pointer is changed to
point to the return address instead of pointing tovalue1(see
dotted line 1). If the pointer is then dereferenced and the
value it points to is changed at some point in the function
f1 to a value specified by attackers, they can then use it to
change the return address to a value of their choosing.

Although in our example we illustrate this technique by
overwriting the return address, indirect pointer overwriting
can be used to overwrite arbitrary memory locations: any
pointer to code that will later be executed could be interest-
ing for an attacker to overwrite.

2.1.2 Exploiting heap-based overflows

Heap memory is dynamically allocated at run-time by the
application. As is the case with stack-based arrays, ar-
rays contained on the heap can, in most implementations,
be overflowed too. The technique for overflowing is simi-
lar except that the heap grows upwards in memory instead
of downwards. In contrast to stack-based buffer overflows,
no return addresses are stored in this segment of memory
so an attacker must use other techniques to gain control of
the execution-flow. An attacker could of course overwrite a
function pointer or perform an indirect pointer overwrite on
pointers stored in these memory regions, but these are not
always available.

Overwriting the memory management information that
is generally associated with a dynamically allocated chunk
[2, 6, 22, 44] is a more general way of attempting to exploit
a heap-based overflow.

We will demonstrate how these dynamic memory allo-
cators can be attacked by focusing on a specific implemen-
tation of a dynamic memory allocator calleddlmalloc [29].
While dlmalloc is used as a basis for the allocator in the
GNU/Linux operating system, these techniques could also
be applied to similar allocators used in other operating sys-
tems. We will describedlmalloc briefly and will demon-
strate how an attacker can manipulate the application into
overwriting arbitrary memory locations by overwriting the
allocator’s memory management information.

Thedlmalloc library is a run-time memory allocator that
divides the heap memory at its disposal into contiguous
chunks, which vary in size as the various allocation rou-
tines (malloc, free, realloc, . . . ) are called. An invariant
is that a free chunk never borders another free chunk when
one of these routines has completed: if two free chunks had
bordered, they would have been coalesced into one larger
free chunk. These free chunks are kept in a doubly linked
list, sorted by size. When the memory allocator at a later
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Figure 1. Stack-based buffer overflow using indirect pointer overwriting: full lines indicate normal
state, dotted lines are changes due to the overwriting

time requests a chunk of the same size as one of these free
chunks, the first chunk of that size in the list will be re-
moved from the list and will be made available for use in
the program (i.e. it will turn into an allocated chunk).

All memory management information (including this list
of free chunks) is stored in-band. That is, the information
is stored in the chunks: when a chunk is freed the mem-
ory normally allocated for data is used to store a forward
and backward pointer). Figure 2 illustrates what a heap of
used and unused chunks could look like.Chunk1is an al-
located chunk containing information about the size of the
chunk stored before it and its own size1. The rest of the
chunk is available for the program to write data in.Chunk22

represents a free chunk that is located in a doubly linked
list together withchunk3andchunk4. Chunk3is the first
chunk in the chain: its backward pointer points tochunk2
and its forward pointer points to a previous chunk in the
list. Chunk2 is the next chunk, with its forward pointer
pointing to chunk3and its backward pointer pointing to
chunk4. Chunk4is the last chunk in our example: its back-
ward pointer points to a next chunk in the list and its forward
pointer points tochunk2.

1The size of allocated chunks is always a multiple of eight, so the three
least significant bits of the size field are used for management information:
a bit to indicate if the previous chunk is in use or not and one to indicate if
the memory is mapped or not. The last bit is currently unused. The ”pre-
vious chunk in use”-bit can be modified by an attacker to force coalescing
of chunks. How this coalescing can be abused is explained later.

2The representation ofchunk2is not entirely correct: ifchunk1is in
use, it will be used to store ’user data’ forchunk1and not the size of
chunk1. We have chosen to representchunk2this way as this detail is
not relevant to the discussion.

Figure 3 shows what could happen if an array that is lo-
cated inchunk1is overflowed: an attacker has overwritten
the management information ofchunk2. The size fields
are left unchanged (although these could be modified if
needed). The forward pointer has been changed to point to
12 bytes before the return address and the backward pointer
has been changed to point to code that will jump over the
next few bytes. Whenchunk1is subsequently freed, it will
be coalesced together with chunk2 into a larger chunk. As
chunk2will no longer be a separate chunk after the coalesc-
ing it must first be removed from the list of free chunks.
Theunlink macro takes care of this: internally a free chunk
is represented by a struct containing the following unsigned
long integer fields (in this order):prev size, size, fd andbk.
A chunk is unlinked as follows:

chunk2−>fd−>bk = chunk2−>bk
chunk2−>bk−>fd = chunk2−>fd

Which is the same as (based on the struct used to represent
malloc chunks):

∗ ( chunk2−>fd +12) = chunk2−>bk
∗ ( chunk2−>bk +8) = chunk2−>fd

As a result, the value of the memory location that is twelve
bytes after the location thatfd points to will be overwritten
with the value ofbk, and the value of the memory location
eight bytes after the location thatbk points to will be over-
written with the value offd. So in the example in Figure
3 the return address would be overwritten with a pointer to
code that will jump over the place wherefd will be stored
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and will execute code that the attacker has injected. How-
ever, since the eight bytes after the memory that bk points
to will be overwritten with a pointer to fd (illustrated as
dummy in Figure 3), the attacker needs to insert code to
jump over the first twelve bytes into the first eight bytes of
his injected code. As with indirect pointer overwriting (see
section 2.1.1), this technique can be used to overwrite arbi-
trary memory locations.

2.1.3 Exploiting dangling pointer references

A pointer to a memory location could refer to a memory lo-
cation that has been deallocated either explicitly by the pro-
grammer (e.g., by calling free) or by code generated by the
compiler (e.g., a function epilogue, where the stackframe of
the function is removed from the stack). Dereferencing of
this pointer is generally unchecked in a C compiler, causing
the dangling pointer reference to become a problem. In nor-
mal cases this would cause the program to crash or exhibit
uncontrolled behavior as the value could have been changed
at any place in the program.

However, double free vulnerabilities are a specific ver-
sion of the dangling pointer reference problem that could
lead to exploitation. A double free vulnerability occurs
when already freed memory is deallocated a second time.
This could again allow an attacker to overwrite arbitrary
memory locations [14].

We illustrate this using dlmalloc in Figure 4. The full
lines in this figure are an example of what the list of free
chunks of memory might look like when using thedlmalloc
memory allocator.Chunk1is bigger than thechunk2and
chunk3(which are both the same size), meaning thatchunk2
is the first chunk in the list of free chunks of equal size.
When a new chunk of the same size aschunk2is freed, it
is placed at the beginning of this list of chunks of the same
size by modifying the backward pointer ofchunk1and the
forward pointer ofchunk2.

When a chunk is freed twice it will overwrite the for-
ward and backward pointers and could allow an attacker to
overwrite arbitrary memory locations at some later point in
the program. As mentioned in the previous section: if a
new chunk of the same size aschunk2is freed it will be
placed beforechunk2in the list. The following pseudo code
demonstrates this (modified from the original version found
in dlmalloc):

BK = f r o n t o f l i s t o f s a m e s i z e c h u n k s
FD = BK−>FD
new chunk−>bk = BK
new chunk−>fd = FD
FD−>bk = BK−>fd = new chunk

The backward pointer ofnewchunk is set to point to
chunk2, the forward pointer of this backward pointer (i.e.

chunk2−>fd = chunk1) will be set as the forward pointer
for newchunk. The backward pointer of the forward pointer
(i.e. chunk1−>bk) will be set tonewchunkand the forward
pointer of the backward pointer (chunk2−>fd) will be set to
newchunk.

If chunk2 would be freed twice the following would hap-
pen (substitutions made on the code listed above):

BK = chunk2
FD = chunk2−>fd
chunk2−>bk = chunk2
chunk2−>fd = chunk2−>fd
chunk2−>fd−>bk = chunk2−>fd = chunk2

The forward and backward pointers ofchunk2both point
to itself. The dotted lines in Figure 4 illustrate what the list
of free chunks looks like after a second free ofchunk2.

chunk2−>fd−>bk = chunk2−>bk
chunk2−>bk−>fd = chunk2−>fd

But since bothchunk2−>fd andchunk2−>bk point to
chunk2, it will again point to itself and will not really be
unlinked. However the allocator assumes it has and the pro-
gram is now free to use the user data part (everything below
’size of chunk’ in Figure 4) of the chunk for its own use.

Attackers can now use the same technique that we pre-
viously discussed to exploit the heap-based overflow (see
Figure 3): they set the forward pointer to point 12 bytes
before the return address and change the value of the back-
ward pointer to point to code that will jump over the bytes
that will be overwritten. When the program tries to allocate
a chunk of the same size again (or tries to free this one),
it will again try to unlink chunk2which will overwrite the
return address with the value ofchunk2’sbackward pointer.

2.1.4 Exploiting integer errors

Integer errors are not exploitable vulnerabilities by them-
selves, but exploitation of these errors could lead to a sit-
uation where the program becomes vulnerable to one of
the previously described vulnerabilities. Two kinds of in-
teger errors that can lead to exploitable vulnerabilities exist:
integer overflows and integer signedness errors. An inte-
ger overflow occurs when an integer grows larger than the
value that it can hold. The ISO C99 standard [21] mandates
that unsigned integers that overflow must have a modulo of
MAXINT+1 performed on them and the new value must
be stored. This can cause an unprepared program to fail
or become vulnerable: if used in conjunction with memory
allocation, too little memory might be allocated causing a
possible heap overflow. Nonetheless, integer overflows do
not usually lead to an exploitable condition.

Integer signedness errors on the other hand are more
likely to occur and could lead to exploitable situations.
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When the programmer defines an integer, it is assumed to
be a signed integer, unless explicitly declared unsigned. If
this integer is later passed as an argument to a function ex-
pecting an unsigned value, an implicit cast will occur. This
can lead to a situation where a negative argument passes a
maximum size test but is used as a large unsigned value af-
terwards, possibly causing a stack or heap overflow if used
in conjunction with a copy operation (e.g.,memcpyor mem-
move3 expects an unsigned integer as its size argument and
when passed a negative signed integer, it will assume this is
a large unsigned value).

More information about these attacks can be found in [7]
and is also discussed extensively in the master thesis [51] of
one of the authors.

2.2 Exploiting data and bss based overflows

Datamemory contains global or static compile-time ini-
tialized memory and thebss4 memory contains uninitialized
global or static variables (that are initialized to 0 at load-
time). These memory segments are constant in size: they
will not grow during program execution. Overflows in these
parts of memory are much the same as heap overflows: as
no return addresses are present an attacker would normally
either overwrite a function pointer or perform an indirect
pointer overwrite.

Programs compiled with the GNU Compiler Collection
can register functions as constructor and destructor func-
tions. These functions will be executed respectively before
and after the main function is executed. To know which
functions to execute as constructor or destructor, a specific
part of memory is reserved in which pointers to these func-
tions are stored. Thesectorsanddtorssections respectively

3memcpyis the standard C library function that is used to copy mem-
ory from one location to another where memory areas may not overlap,
memmovedoes the same but allows for overlapping memory areas.

4bssstands for ”block started by symbol”.

are stored after thedata section and, hence, if a buffer lo-
cated in this data section is overflowed it can be used to
overwrite them. Note that since thectorssection has prob-
ably finished executing once an attacker is able to overflow
a data-based buffer, this section is of less importance to an
attacker. The layout of the header section between thedata
andbsssections of a statically linked application compiled
with the GNU Compiler Collection (version 2.95.3) is as
follows: data, eh frame, ctors, dtors, GOTandbss(see Fig-
ure 5(a)). These sections will be mapped to memory in that
order. Attackers can inject code by inserting their shellcode
into the buffer they are overflowing in the data section and
by continuing the overflow and overwriting a pointer in the
dtorssection to point to their code. When the program fin-
ishes the main function, it will call the injected code [36].

2.3 Attacks on format string vulnerabilities

Format functions are used to format the output of specific
information. They have a variable amount of arguments and
expect a format string as argument. The format string is a
character string that is literally copied to the output stream
unless a % character is encountered. This character is fol-
lowed by format specifiers that will manipulate the way the
output is generated. When a format specifier requires an ar-
gument, the format function expects to find this argument
on the stack. A format string vulnerability occurs if an at-
tacker is able to specify the format string to a format func-
tion (e.g.,printf(s), wheres is a user-supplied string). One
format specifier is particularly interesting to attackers: %n.
This specifier will write the amount of characters that have
been formatted so far to a pointer that is provided as an ar-
gument to the format function [1].

If attackers are able to specify the format string, they
can use format specifiers like %x (print the hex value of
an integer) to pop words off the stack, until they reach a
pointer to a value they wish to overwrite. This value can



then be overwritten by crafting a special format string with
%n specifiers [41]. Using this technique attackers can read
and write arbitrary memory locations.

We described some advanced exploitation techniques in
this section and focused on heap-based buffer overflows and
dangling pointer references. We have focused on these two
specific attacks as, next to the more global countermeasures
that were designed using our machine model, we present the
details of a countermeasure that would specifically make at-
tacks on heap-based buffer overflows and dangling pointer
references harder. However, the attacks describes described
in this section are not the only way an attacker can perform
code execution, [23, 40] describe a number of attacks on
Multics where an attacker was able to gain higher privi-
leges by misusing constructs specific to the implementation
of Multics that were not a result of using a specific pro-
gramming language. Such attacks could also be modeled
when using a machine-model. This might make it easier for
software engineers to fix these bugs.

3 Model-based countermeasure design

Most of the countermeasures described in section 5 use
an ad hoc approach when trying to prevent vulnerabilities.
In [52] we concluded that a more methodical approach is
needed to combat code injection attacks. We propose do-
ing this by building a model of the execution environment
of the program based on the memory locations and abstrac-
tions that influence the execution flow. This model con-
tains addresses and abstractions that can be used by an at-
tacker to directly or indirectly influence the control flow of a
particular application, supplemented with the locations that
could lead to indirect overwriting of these addresses. Fi-
nally, these are supplemented with contextual information:
what these specific memory locations are used for at dif-
ferent places of the execution flow and what operations are
performed on them. This machine model allows a designer
of countermeasures to view a platform in a more abstract
way and as a result more effort can go into designing coun-
termeasures rather than understanding obscure, possibly in-
significant, platform details. It also allows a designer to take
into account what the effects of a particular countermeasure
are on a platform before having to implement it.

On most architectures code and data are loaded into sep-
arate segments of memory and have different properties
(e.g. the code segment is typically read-only, the data seg-
ment is in some cases, on architectures that support it, non-
executable). We can protect memory locations against code
injection attacks by using a similar approach: by separating
pointers and control-flow information from normal data like
buffers, i.e. to store them in separate contiguous memory
areas instead of storing them next to each other. Separating

pointers and control-flow information would make it easier
to add protections to these locations and would already pre-
vent buffer overflow attacks from modifying them. We also
suggest protecting the different memory sections by placing
a non-writable page in between each section, making sure
that a buffer overflow will not allow an attacker to write
into other sections. A limitation of this approach is that,
in its current form, it does not take attacks that can modify
arbitrary memory locations (like format string vulnerabili-
ties) into consideration. However, protecting against buffer
overflow attacks that perform code injection is a first step
that could afterwards be enhanced to protect against code
injection attacks in general.

In the rest of the section we will illustrate our ap-
proach for the 32-bit Intel architecture (IA32), using the
GNU/Linux operating system with gcc-2.95.3 for the lan-
guage C.

Separating control and data information requires several
changes to the process memory of an application. We will
describe the major changes here and will discuss one of
these changes in more detail.

• Firstly, we must modify the way the stack is organized:
The control data (e.g. the return address, the frame
pointer, caller and callee save registers, pointers, . . . )
must be separated from the regular data. To do this
we suggest making 3 stacks: one stack which contains
the return addresses this is the regular stack and can
still take advantage of the call and ret instructions. A
second stack contains the frame pointers, local pointers
and arrays of pointers5. Finally a third stack contains
the other data.

• Secondly, dynamically allocated memory must have its
memory management information stored out-band. To
accomplish this its management information is stored
at the beginning of the heap-section in a hashtable. The
actual dynamically allocated memory simply contains
the user-allocated memory.

• Finally, the memory in the data segment must be orga-
nized in a different order. The ctors and dtors sections
would be stored first (and could, in theory, be placed
in a read-only page), followed by the Global Offset Ta-
ble (GOT), the exception handling frame, which are
followed by pointers, regular data, arrays of pointers
(again boundschecked) and finally normal arrays. Fig-
ure 5(a) shows the current layout and 5(b) shows the
new layout.

5These arrays would be boundschecked: the impact on performance of
this kind of boundschecking would be acceptable because arrays of point-
ers don’t occur that often in a regular program
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3.1 A partial machine model for the dynamic
memory allocator

For the purposes of this paper we will focus on the part
of the machine model dealing with dynamically allocated
memory. As we described earlier the machine model will
focus on memory locations that can be used by an attacker
to modify the execution flow of an application. We repre-
sent the data structures and abstractions that are relied on
during program execution using UML-class diagrams (see
Figure 6). Specific data structures in memory are repre-
sented as classes, with the data members representing other
data structures contained in this structure (e.g. the Heap
contains MallocChunks). The order and frequency that par-
ticular parts of memory occur in, are denoted by the signs
in front of the data member names:

+ denotes an ordered location.

- denotes that the order does not matter

* denotes that the part of memory can occur zero or more
times, other data members occur exactly once.

For example, in Figure 6 the heap contains one or more
malloc chunks in any order, with the malloc chunks con-
taining exactly one instance ofprevsizeandsize in order.
The member functions represent operations that can be per-
formed on specific memory locations, in the case of a chunk
those areallocateandfree. These member functions are re-
defined in their children if these operations are defined on
these locations (e.g. a free chunk can be reallocated, but
should not be freed a second time, henceallocate is rede-
fined, whilefree is not).

To be able to represent the operations that are exe-
cuted on these locations we have defined two primitives:
R(source)andW(source, destination)which stand for read
and write respectively. They can appear in forms where they
respectively read or write to memory locations or registers.
Besides these 2 primitives we need some control structures
(like conditionals and loops) and temporary values (which
are needed to temporarily store states in our model that in-
dicate that a particular value was read into a variable at that
point in time).

We have defined two types of representations to model
an operation (see appendix A for an example of how the
free operation would be expressed):

Define: defines what the operation does in sequential or-
der in terms of memory location modifications (e.g.
Define MallocChunk.free(memory)defines thefree
operation onMallocChunkmemory which would ex-
pect a pointer to memory as argument, the details of
this operation are in appendix A).

Modify: expresses what memory locations are modified by
the function, expressed in terms of the supplied argu-
ment to the function or in terms of globally accessible
data (e.g. Modify MallocChunk.free(memory)in ap-
pendix A specifies the modified memory functions for
thefreeoperation).

Applying the principles of control and data separation as
described earlier to the heap results in the modification of
the machine model depicted in Figure 7. The heap now con-
tains one hashtable at the beginning of memory, followed by
malloc chunks that contain the data of the chunk. The in-
formation contained in theMallocChunkin Figure 6 is now
stored in the hashtable. When anallocate or free opera-
tion is performed, the required information is looked up in
the hashtable. The countermeasure for preventing a double
frees of dangling pointer reference is a fairly simple one:
the unused bit in the size structure of Figure 6 is used to
specify whether the current chunk is in use or not. This
could also be solved by checking theprev inusebit of the
next chunk, but the cost of accessing that bit is higher than
using the unused bit in size, especially when using the extra
indirection of the hashtable.

We are currently working on an implementation of this
countermeasure to better assess the impact such a counter-
measure has on performance and memory usage.

3.2 A machine model for the IA32-GNU/Linux-
GCC-C platform

The machine model obviously includes more than the ab-
straction of the dynamic memory allocator. In this section
we will describe the memory locations that form the full ba-
sis for our model, namely the memory locations that could
be modified by attackers to gain control over the execution-
flow of an application. These memory locations are specific
for programs on a UNIX-like environment compiled with
the GNU Compiler Collection, although many have equiv-
alents in other operating systems and compilers.

Return address: The return address is stored on the stack
and points to the memory location where execution
must continue once a function has finished. This is the
address that is usually attacked by stack-based buffer
overflows and is also the memory location that most
countermeasures protect.

Frame pointer: The frame pointer points to the location
on the stack where a new stackframe was started and
is used to reference local variables on the stack. The
frame pointer is stored in a register and thus cannot
be modified directly by an attacker. However when a
new stack frame is started, the old frame pointer will
be stored onto the stack and will be restored before



Figure 6. A typical machine model for the memory allocator.

Figure 7. A modified machine model for the memory allocator.



returning from the function. When returning from a
function the current frame pointer (in the register) will
be copied to the stackframe pointer to free the stack
and the stack-stored frame pointer will be copied to the
frame pointer. The value that’s at the top of the stack
is now the return address and will be used to return
from the function. If attackers modify the stack-stored
frame pointer they will, at some point in the sequence
of function calls, be able to influence where the return
address is read from. Such an attack on this memory
location has been described in detail in [26].

Function and data pointers: An easy way for an attacker
to modify the control flow of a program is to modify
a function pointer to point to injected code and to wait
for the function pointer to be called. Data pointers can
also be misused by attackers if they point to data that
the attacker will be able to write to using that pointer.
By modifying the contents of the data pointer and mak-
ing it point to a new location, an attacker can subse-
quently modify the value stored at that memory loca-
tion (indirect pointer overwriting, see section 2.1.1).

Virtual function pointers: Virtual function tables and
pointers are used to support dynamic binding for C++.
The binding of a member function declared as virtual
then occurs at runtime based on the type of the ob-
ject. To facilitate this dynamic binding the compiler
adds a virtual table to every class that contains virtual
functions. Then in each instance made of the class,
a pointer (called the virtual pointer) is placed to this
virtual table. Whenever a virtual member function is
called, the virtual pointer is used to locate the virtual
table and then the pointer at the appropriate virtual ta-
ble slot is dereferenced and the method’s code can be
located. The virtual function pointer is stored in each
object together with its data members. If attackers can
overflow one of the buffers contained in the object they
may be able to overwrite this pointer6. The attackers
then make this pointer point to a dummy table that con-
tains entries for the member functions of the object,
that point to injected code. When one of these member
functions is subsequently called, the injected code will
be executed. More information on how these pointers
can be attacked can be found in [37].

setjmp/longjmp buffer: The setjmp and longjmp func-
tions are used to perform non-local returns in C,
mainly for error handling. If a program wishes to re-
turn to a specific location in code when an error oc-
curs, it can callsetjmpwith a pointer to a variable of
typejmp buf as argument. Thejmp buf type is a struct

6Or the virtual function pointer of the next object if the pointer is stored
before the data, this is compiler dependent.

that contains information needed to restore the stack
to its state at the moment of thesetjmpcall (i.e. re-
moving stackframes of functions further down the call
chain). The information stored in thejmp buf are the
callee save registers7, the frame pointer register, the
stack pointer register and the instruction pointer regis-
ter (i.e. thesetjmpreturn address). By restoring this
information into the registers, the stack will be freed
of lower level stack frames and execution will continue
at thesetjmpcall site. If attackers modify the informa-
tion (especially the saved instruction pointer register)
in the jmp buf and then causes an error that will make
the program call alongjmp, they will be able to gain
control over the execution flow.

Exception handling frame: For C++ programs that make
use of exceptions, the compiler will generate an excep-
tion handling frame (calledeh frame) which could be
overwritten to point to injected code. If an attacker can
then force the program to generate an exception, the
injected code would be executed.

dtors: The dtors section contains a list of pointers, termi-
nated by a NULL, to functions that will be executed af-
ter the main function has finished. If an attacker over-
writes one of these pointers8, with a pointer to injected
code it will be executed after the normal program code
has finished executing.

Global Offset Table: The Global Offset Table (GOT) is
used for dynamically linking code. It allows posi-
tion independent code to access data at absolute vir-
tual addresses. Instead of accessing the data directly
this type of code references a position in its global
offset table to retrieve the address, allowing the data
to be stored at any memory location without breaking
the code. An executable and every shared library each
have their ownGOT. The dynamic linker will calcu-
late the absolute addresses of the requested symbols
and will set the appropriate entries in theGOT to point
to these addresses. TheGOT also contains addresses
of functions that have been dynamically loaded9. If an
attacker overwrites one of the addresses with the loca-
tion of injected code then the next time this function
will be called, the attacker’s code will be executed.

atexit: atexit is a C function defined in the ISO C99 stan-
dard that allows a program to register a function to be

7These registers are supposed to have the same value after a function
returns, so if a function wishes to use them it must save them and restore
them before returning.

8If no destructor functions are registered thedtorssection will still be
present but will only contain the NULL terminator. An attacker can still
exploit an empty dtors section by overwriting the NULL terminator

9The process of calling dynamically linked code is more complicated
but not relevant to the discussion, see [30] for more details.



called when the program terminates normally (i.e. by
explicitly or implicitly calling exit). The atexit func-
tion is passed a function pointer to the function that
is to be registered and stores the function pointer in
theatexit function list. When the program reaches the
stage thatexit is called, all functions in the function
list will be executed one by one. If attackers overwrite
one of these function pointers with a pointer to injected
code, they will be able to execute arbitrary code [8].

Memory allocator information: The accounting informa-
tion that is used to keep track of free chunks in a mem-
ory allocator can, as we demonstrated in section 2,
be used to indirectly overwrite arbitrary memory lo-
cations if this information can be modified by a heap
overflow or double free vulnerability.

Memory allocation hooks: Some implementations ofdl-
mallocallow a program to register hooks for themal-
loc, realloc, free andmemalignfunction calls. These
hooks contain pointers to functions that will be exe-
cuted by these memory management functions when-
ever they are called. If an attacker overwrites one of
these hooks with a pointer to injected code, the code
will be executed whenever the respective memory al-
location function is executed.

4 Discussion and future work

Using a modelbased approach to designing countermea-
sures has several advantages: the model allows one to rea-
son about countermeasure design at a conceptual level and
in a more systematic way. Because all relevant informa-
tion is easily available and irrelevant information is not,
the designer can more easily check for possible shortcom-
ings in the proposed countermeasure. Many of the counter-
measures in section 5 use an ad hoc approach that has led
to many of these countermeasures being bypassed. These
countermeasures could benefit from a more structured way
of countermeasure design which the use of machine models
offers. A further advantage of using a machine model is that
it provides an easier way of comparing the effectiveness of
countermeasures. Related to that, it would also offer a way
of evaluating how two countermeasures could interfere with
or complement each other.

Such a machine model is however strongly linked to the
architecture, the operating system, the programming lan-
guage and the compiler that it is based on. Because this
dependency would limit the applicability of such a model,
we are also in the process of designing a metamodel and
devising a methodology for constructing machine models
based on this metamodel.

The metamodel is an abstraction of several machine
models: it provides uniformity when constructing machine

models for a particular platform and allows one to work out
the global principles of a particular countermeasure without
having to deal with the implementation details. This allows
countermeasure builders to design countermeasures at an
even higher level of abstraction in a platform-independent
way. By allowing platform-independent reasoning and by
keeping the representation of machine models uniform, the
metamodel simplifies the task of porting a countermeasure
from one platform to another while being able to assess if
a particular platform may need extra measures. For exam-
ple, the Windows port [9] of StackGuard [13] neglected to
take into account the way exceptions were handled on this
platform and as a result attackers found a way of bypassing
the countermeasure fairly quickly [32]. We argue that us-
ing the metamodel and machine models for the respective
platforms would have made it easier to spot possible short-
comings when porting the countermeasure.

The methodology describes how to build a machine
model for a particular platform based on this metamodel.
It contains information that a particular expert of a platform
(but not necessarily a security expert) must focus on to build
a machine model for that platform. The machine model can
then be used by a security engineer to build countermea-
sures to protect against code injection attacks. As a result
the model also improves the possibility of collaboration:
one person can build the machine model, another can de-
sign the countermeasure and yet another can implement the
countermeasure.

A significant problem of the principle of control data
and regular data separation that we use in our countermea-
sure is the possible impact on performance because of cache
misses: if related data is stored in separate pages, multiple
pages may have to be loaded into memory, to get the same
information that would normally be stored in a single page.
The performance impact of using separate stacks must also
be investigated.

A shortcoming of the countermeasure for attacks against
heap memory is the fact that we ignore the kind of data
that is stored in the heap-allocated memory: objects (in the
case of C++), structs and other pointers that may be stored
in this memory could still lead to code injection attacks.
Separating this data from regular data is something we plan
to address in the near future.

5 Related work

Much work has gone into building countermeasures for
the attacks described in section 2. In this section we will
examine some of these countermeasures and will discuss
their limitations. Many countermeasures have been devel-
oped and a more global overview can be found in a survey
we recently completed [52]. We will focus on two types
of countermeasures here: a subpart of preventative counter-



measures (safe languages) and detecting countermeasures.
Preventative countermeasures try to prevent a vulnerabil-
ity from existing. Detecting countermeasures try to prevent
a vulnerability from being exploited, which in most cases
will lead to detection of an attempted exploitation, hence
the name detecting countermeasures.

• Safe languages [19, 28, 33, 34] that are based on C or
C++, offer a systematic way of solving the problems
mentioned in section 2, by using a variety of tech-
niques like managed memory, boundschecking, static
checking, etc. The main disadvantage of these lan-
guages is that they change the language, so programs
must be either explicitly written for that specific lan-
guage or must be ported.

• Boundschecking solutions [3, 20, 25, 31, 35, 39, 45]
solve the buffer overflow problem by ensuring that a
pointer can not write outside the bounds of the object
it is pointing to. This is done by instrumenting the pro-
gram to check every pointer access. As a result the im-
pact of these boundscheckers on performance is gener-
ally fairly high, limiting their use at deployment-time.

• Many countermeasures have been developed that will
protect a single or multiple memory locations from
exploitation. This can be done in a variety of ways:
by placing a random value before the address being
protected and making sure that the random value re-
mains unchanged before using the memory location
[13, 15, 27], by copying the memory location to a dif-
ferent area of memory and comparing the original to
the copy before use [4, 11, 16, 47] or by calculating a
checksum of several memory locations and encrypting
(XOR) this with a random value and recalculating the
checksum and encryption and comparing it to the orig-
inal checksum before using the memory location [38].
Many of these countermeasures were designed ad hoc:
they protect against a specific address being overwrit-
ten and can often be bypassed (especially using indi-
rect pointer overwriting).

• Another approach taken by some countermeasures is
to attempt to protect ”all” memory locations: either
by encrypting all pointers [12] or by enforcing a kind
of access control on what memory locations pointers
can reference [50]. These approaches are the most
promising when trying to prevent code injection at-
tacks. However if the program suffers from memory
leaks or could be made to show the contents of spe-
cific memory locations (e.g. using a format string vul-
nerability), the countermeasure in [12] could be by-
passed: attackers could guess the key by viewing the
encrypted locations and encrypt the pointers to mem-
ory locations which they inject with the same key. The

approach in [50] has some limitations: the slowdown
is fairly large (but less than boundscheckers) and the
static analysis that is used to determine what locations
are appropriate for pointers to write to, may produce
false negatives. This could result in memory locations
that should not be written to, to be marked as writable.

• Marking memory as non-executable [42,46] is also an
approach that has been taken to prevent code injec-
tion attacks. However this approach has some limita-
tions: memory that is not marked as non-executable
but is still writable could still be used to perform
these attacks (e.g. [42] only marks the stack as non-
executable, the heap can still be used for code injec-
tion attacks). Another limitation is that these coun-
termeasures can be bypassed by ’return-into-libc’ at-
tacks [43, 48], where attackers execute existing code
(either code that is part of the program or library code)
with arguments that they provide (e.g. they could call
the libc wrapper for thesystemsystem call with a pro-
gram they wish to run as argument).

• Another kind of countermeasure provides a random-
ized instruction set [5, 24]: instructions are encrypted
(XOR) when they are stored in memory and decrypted
before being loaded into the processor. Without ac-
cess to the encryption key, code that attackers inject
would be decrypted wrongly and the program would
probably crash. This approach suffers from the same
problem as [12]: if information is leaked, an attacker
could guess the key and encrypt his instructions ac-
cordingly. Another major limitation of this counter-
measure is that, unless hardware changes are made
(e.g. a special chip), the impact on performance is ex-
tremely high as the code must be emulated.

• Attackers generally need to know where their code or
the location they wish to overwrite is located in mem-
ory before they can perform a code injection attack.
By randomizing the position at which specific mem-
ory starts [46, 49], it is harder for attackers to guess
where their code is located or where specific vulnera-
ble memory addresses are located. This countermea-
sure could also be bypassed if attackers can read out
memory locations: by reading the position of some lo-
cations they could guess where their code or where the
target memory location is located.

Some of these countermeasures offer good and com-
plete protection, but can be impractical to use, either due
to high performance penalties or because they require man-
ual changes to the program or both. However, many of
these countermeasure are designed in an ad hoc way and
as a result suffer from limitations that could be misused by
an attacker to bypass the countermeasure. Modifying these



countermeasures to offer better protection against these at-
tacks could be made easier if they were designed using the
models that we described in section 3.

6 Conclusion

We have discussed how attackers can exploit vulnerabil-
ities that were previously considered harmless and how they
are using more advanced exploitation techniques to bypass
countermeasures that aim to protect a single memory loca-
tion. From this we concluded that there is a need for a more
structured approach to counter attacks and we are building
a model of the execution environment of a program to iden-
tify memory locations that may be used by an attacker to
inject code.

Using machine models and a metamodel, we offer a
higher level of abstraction when designing countermeasures
which will allow designers to create countermeasures more
easily and will allow them to detect problems sooner. The
models also allow for easier collaboration when building
countermeasures: the person building the model is not nec-
essarily the person designing the countermeasure. Because
the machine models are designed uniformly based on the
metamodel, they also allow for easier porting of the coun-
termeasure from one platform to another. Related to that,
they also provide a platform for evaluating and comparing
different countermeasures more easily.

The approach we present here is far from complete; we
are in the process of constructing machine models for other,
sufficiently different platforms. This establishes a firm ba-
sis for a metamodel that becomes a driver in refining our
methodology.
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A Representation of thefreeoperation in the model

Modify MallocChunk . f r e e ( memory ) :
m a l l o c s t a t e . max fas t . f a s t c h u n k b i t

−> R( m a l l o c s t a t e + 0) & 2
−> R( m a l l o c s t a t e ) & 2

m a l l o c s t a t e . max fas t . a n y c h u n k s b i t
−> R( m a l l o c s t a t e + 0) & 1
−> R( m a l l o c s t a t e ) & 1

CHUNK. fo rward −> ∗ ( memory − 8 + 8)
−> memory

m a l l o c s t a t e . f a s t b i n s [ ( SIZE / 8)− 2]
−> R( m a l l o c s t a t e + 4) + ( ( (R( memory − 4) & 0xFFFFFFF8 ) / 8 )− 2)

PREVCHUNK. fo rward . backward
−> R ( ( memory − 8) − R ( ( memory − 8) + 4) + 8) + 12
−> R( memory − R( memory − 4) ) + 12

PREVCHUNK. backward . fo rward
−> R ( ( memory − 8) − R ( ( memory − 8) + 4) + 12) + 8
−> R( memory − R( memory − 4) + 4) + 8

CHUNK. fo rward . backward
−> R ( ( memory − 8) + 8) + 12 −> R( memory ) +12

CHUNK. backward . fo rward
−> R ( ( memory − 8) +12) + 8 −> R( memory + 4) +8

NEXTCHUNK. s i z e
−> ( ( memory − 8) + R( memory − 8 + 4) + 4)
−> ( ( memory − 8) + R( memory − 4) + 4)

NEXTCHUNK. fo rward . backward
−> R ( ( memory − 8) + R( memory − 8 + 4) + 8) + 12
−> R ( ( memory − 8) + R( memory − 4) + 8) + 12

NEXTCHUNK. backward . fo rward
−> R ( ( memory − 8) + R( memory − 8 + 4) + 12) + 8
−> R ( ( memory − 8) + R( memory − 4) + 12) + 8

CHUNK. backward
−> memory − 8 + 12
−> memory + 4

m a l l o c s t a t e . b i n s [ 0 ] . f o rward . fo rward
−> R(R( m a l l o c s t a t e + 48) + 8) + 8

m a l l o c s t a t e . b i n s [ 0 ] . f o rward . backward
−> R(R( m a l l o c s t a t e + 48) + 8) + 12

CHUNK. s i z e . p r e v i n u s e
−> R( memory − 8 + 4) & 1
−> R( memory − 4) & 1

CHUNK. s i z e . s i z e
−> R( memory − 8 + 4) & 0xFFFFFFF8
−> R( memory − 4) & 0xFFFFFFF8

m a l l o c s t a t e . top
−> m a l l o c s t a t e + 40



Def ine MallocChunk . f r e e ( memory ) :
i f R ( memory ) = 0

r e t u r n
CHUNK = R( memory ) − 8
SIZE = R(CHUNK. s i z e . s i z e )
i f SIZE <= 80

W( m a l l o c s t a t e . max fas t . f a s t c h u n k b i t , t r u e )
W( m a l l o c s t a t e . max fas t . anychunksb i t , t r u e )
W(CHUNK. forward , R( m a l l o c s t a t e . f a s t b i n s [ ( SIZE / 8)− 2 ] ) )
W( m a l l o c s t a t e . f a s t b i n s [ ( SIZE / 8)− 2 ] , CHUNK)

i f R ( chunk . s i z e . mmap) = f a l s e
W( m a l l o c s t a t e . max fas t . anychunksb i t , t r u e )
NEXTCHUNK = CHUNK + SIZE
NEXTSIZE = R(NEXTCHUNK. s i z e . s i z e )
i f R (CHUNK. s i z e . p r e v i n u s e ) = f a l s e

SIZE = SIZE + R(CHUNK. p r e v s i z e )
CHUNK = CHUNK − R(CHUNK. p r e v s i z e )
FD = R(CHUNK. fo rward )
BK = R(CHUNK. backward )
W(CHUNK. fo rward . backward ,R(CHUNK. backward ) )
W(BK. forward , FD)

i f NEXTCHUNK != R( m a l l o c s t a t e . top )
NEXTINUSE = R ( (NEXTCHUNK + NEXTSIZE) . s i z e . p r e v i n u s e )
W(NEXTCHUNK. s i z e , NEXTSIZE)
i f NEXTINUSE = f a l s e

FD = R(NEXTCHUNK. fo rward )
BK = R(NEXTCHUNK. backward )
W(NEXTCHUNK. fo rward . backward ,R(NEXTCHUNK. backward ) )
W(BK. forward , FD)
SIZE = SIZE + NEXTSIZE

BK = R( m a l l o c s t a t e . b i n s [ 0 ] )
FD = R( m a l l o c s t a t e . b i n s [ 0 ] . f o rward )
W(CHUNK. backward , R( m a l l o c s t a t e . b i n s [ 0 ] ) )
W(CHUNK. forward , FD)
W(BK. forward , CHUNK)
W(FD . backward , CHUNK)
W(CHUNK. s i z e . p rev i nuse , t r u e )
W(CHUNK. s i z e . s i z e , SIZE )
W( (CHUNK + SIZE ) . p r e v s i z e , SIZE )

e l s e
W(CHUNK. s i z e . p rev i nuse , t r u e )
W(CHUNK. s i z e . s i z e , SIZE + NEXTSIZE)
W( m a l l o c s t a t e . top , CHUNK)


