
0

CPM: Masking Code Pointers to Prevent Code Injection Attacks

PIETER PHILIPPAERTS, YVES YOUNAN, STIJN MUYLLE and FRANK PIESSENS,
DistriNet Research Group, University of Leuven
SVEN LACHMUND and THOMAS WALTER, DOCOMO Euro-Labs

Code Pointer Masking (CPM) is a novel countermeasure against code injection attacks on native code. By
enforcing the correct semantics of code pointers, CPM thwarts attacks that modify code pointers to divert the
application’s control flow. It does not rely on secret values such as stack canaries and protects against attacks
that are not addressed by state-of-the-art countermeasures of similar performance. This paper reports on
two prototype implementations on very distinct processor architectures, showing that the idea behind CPM
is portable. The evaluation also shows that the overhead of using our countermeasure is very small and the
security benefits are substantial.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Compilers

General Terms: Security, Algorithms

Additional Key Words and Phrases: code injection,code pointer,countermeasure,masking

ACM Reference Format:
Philippaerts, P., Younan, Y., Muylle, S., Piessens, F., Lachmund, S., Walter, T. 2012. CPM: Masking Code
Pointers to Prevent Code Injection Attacks. ACM Trans. Info. Syst. Sec. 0, 0, Article 0 (2012), 27 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION
Being able to silently break into a computer system and taking it over without the
legitimate user realizing this is the most optimal scenario for any hacker. The attacker
can spy on the user, abuse the available resources (in a botnet for example), and use
the computer to anonymize illicit activities. If the user of the system does not notice
any of this, he is of course less likely to try and interfere with the attacker. To obtain
this objective, a hacker usually exploits a bug in software that leads to a code injection
attack. There are different types of code injection attacks, but in this paper we will use
the term to refer to code injection attacks that exploit bugs in so-called native code.

In these attack, the attacker abuses a bug in an application in such a way that he
can divert the control flow of the application to run binary code — known as shellcode
— that the attacker injected in the application’s memory space. The most basic code
injection attack is a stack-based buffer overflow that overwrites the return address.
Several other — more advanced — attack techniques have also been developed, in-
cluding heap based buffer overflows, indirect pointer overwrites, and others. All these
attacks eventually overwrite a code pointer, e.g. a memory location that contains an
address that the processor will jump to during program execution.

According to the NIST’s National Vulnerability Database [National Institute of Stan-
dards and Technology], 9.86% of the reported vulnerabilities are buffer overflows, com-

Author’s addresses: DistriNet Research Group, University of Leuven, Celestijnlaan 200A, B-3001 Leuven,
Belgium; DOCOMO Euro-Labs, Landsberger Strasse 312, 80687 Munich, Germany.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1094-9224/2012/-ART0 $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: 2012.

0:2 Philippaerts et al.

ing second to only SQL injection attacks (16.54%) and XSS (14.37%). Although buffer
overflows represent less than 10% of all attacks, they make up 17% of the vulnerabili-
ties with a high severity rating.

Code injection attacks are often high-profile, as a number of large software com-
panies can attest to. Apple has been fighting off hackers of the iPhone since it has
first been exploited with a code injection vulnerability in one of the iPhone’s libraries1.
Google saw the security of its sandboxed browser Chrome breached2 because of a code
injection attack. And an attack exploiting a code injection vulnerability in Microsoft’s
Internet Explorer3 led to an international row between Google and the Chinese gov-
ernment. This clearly indicates that even with the current widely deployed counter-
measures, code injection attacks are still a very important threat.

In this paper we present a new approach, called Code Pointer Masking (CPM), for
protecting against code injection attacks. CPM is very efficient and provides protection
that is partly overlapping with but also complementary to the protection provided by
existing efficient countermeasures.

By efficiently masking code pointers, CPM constrains the range of addresses that
code pointers can point to. By setting these constraints in such a way that an attacker
can never make the code pointer point to injected code, CPM prevents the attacker
from taking over the computer. Contrary to other highly efficient countermeasures,
CPM’s security does not rely on secret data of any kind, and so cannot be bypassed if
the attacker can read memory [Strackx et al. 2009; Lhee and Chapin 2003].

In summary, the contributions of this paper are:

— It describes the design of a novel countermeasure against code injection attacks on C
code.

— It reports on two prototype implementations for the ARM and x64 architectures that
implement the full countermeasure.

— It shows by means of the SPEC CPU benchmarks that the countermeasure imposes
an overhead of only a few percentage points and that it is compatible with existing
large applications that exercise almost all corners of the C standard.

— It provides an evaluation of the security guarantees offered by the countermeasure,
showing that the protection provided is complementary to existing countermeasures.

The work in this paper is an evolution of the work in [Philippaerts et al. 2011]. In
particular, an entire new prototype on x64 has been implemented and evaluated. This
shows that the idea behind CPM can be ported to vastly different processor architec-
tures, and that its excellent performance is not specific to a single processor type.

The paper is structured as follows: Section 2 briefly describes the technical details
of a typical code injection attack and gives an overview of common countermeasures.
Section 3 discusses the design of our countermeasure, and Section 4 details the imple-
mentation aspects. Section 5 evaluates our countermeasure in terms of performance
and security. Section 6 further discusses our countermeasure and explores the ongoing
work. Section 7 discusses related work, and finally Section 8 presents our conclusions.

2. BACKGROUND: CODE INJECTION ATTACKS
Code injection attacks occur when an attacker can successfully divert the processor’s
control flow to a memory location whose contents is controlled by an attacker. The
only way an attacker can influence the control flow of the processor is by overwriting
locations in memory that store so-called code pointers. A code pointer is a variable that

1CVE-2006-3459.
2CVE-2008-6994.
3CVE-2010-0249.

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: 2012.

CPM: Masking Code Pointers to Prevent Code Injection Attacks 0:3

Return Address f0

Saved Frame Pointer f0

Local Variables f0

Arguments f1

Return Address f1

Saved Frame Pointer f1

Buffer

The Stack

Higher Addresses

Lower Addresses

S
ta

c
k
fra

m
e

 f0
S

ta
c
k
fra

m
e

 f1

 f0:

 …
 call f1

 ...

Code

Fig. 1. A typical stack layout with two functions f0 and f1

contains the memory address of a function or some other location in the application
code where the processor will at some point jump to. Well-known code pointers are the
return address and function pointers.

In this section, we briefly describe the most basic type of code injection attack, which
occurs by writing outside the bounds of a buffer on the stack and overwriting the re-
turn address. This type of attack is not exploitable anymore in most cases, due to the
deployment of various countermeasures. However, it is very easy to explain, and thus
serves as a perfect illustration of the basics of a code injection attack. We then briefly
discuss some widely deployed countermeasures, and also explain more advanced at-
tack techniques that can be used to get around these countermeasures.

2.1. Stack-Based Buffer Overflows
When an array is declared in C, space is reserved for it and the array is manipulated
by means of a pointer to the first byte. No information about the array size is available
at runtime, and most C-compilers will generate code that will allow a program to copy
data beyond the end of an array, overwriting adjacent memory space. If interesting
information is stored somewhere in the adjacent memory space, it can be possible for
an attacker to overwrite it. On the stack this is usually the case: it stores the addresses
to resume execution after a function call has completed its execution, i.e., the return
address.

For example, on the ARM and x64 architectures the stack grows down (i.e., newer
function calls have their variables stored at lower address than older ones). The stack
is divided into stackframes. Each stackframe contains information about the current
function: arguments of the called function, registers whose values must be stored
across function calls, local variables and the return address. This memory layout is
shown in Figure 1. An array allocated on the stack will usually be located in the sec-
tion of local variables of a stackframe. If a program copies data past the end of this
array, it will overwrite anything else stored before it and thus will overwrite other
data stored on the stack, like the return address.

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: 2012.

0:4 Philippaerts et al.

If an attacker can somehow get binary code in the application’s memory space, then
he can use the above technique to overwrite a return address and divert the control
flow to his binary code that is stored somewhere in the application’s memory. This
binary code is called shellcode, and is typically a very short code fragment that seeks
to allow the attacker to execute arbitrary instructions with the same privilege level as
the application. For instance, shellcode can be used to steal sensitive data or install a
backdoor on the system. A common way of getting this shellcode in the memory space
of the application is by giving it as input to the application. This input is then typically
copied to the stack or the heap, where the attacker can then divert the control flow to.

The stack-based buffer overflow attack described earlier is the oldest and best-
known code injection attack. However, more advanced attack techniques follow a sim-
ilar pattern in the sense that at some point a code pointer gets overwritten. Our coun-
termeasure applies to all these attacks, as we will discuss in Section 5.

2.2. Countermeasures and Advanced Attacks
Code injection attacks have been around for decades, and a lot of countermeasures
have been developed to thwart them. Only a handful of these countermeasures have
been deployed widely, because they succeed in raising the bar for the attacker at only
a small (or no) performance cost. This section gives an overview of these countermea-
sures.

Stack Canaries try to defeat stack-based buffer overflows by introducing a secret
random value, called a canary, on the stack, right before the return address. When an
attacker overwrites a return address with a stack-based buffer overflow, he will also
have to overwrite the canary that is placed between the buffer and the return address.
When a function exits, it checks whether the canary has been changed, and kills the
application if it has.

The initial implementations of stack canaries were foiled by using indirect pointer
overwrite attacks, where an attacker overwrites an unprotected pointer and integer
value on the stack. If the application code later dereferences the pointer and overwrites
the value with the integer, the attacker can write a random value anywhere in memory
by simply manipulating the pointer and the integer. This allows an attacker to write
any value over the return address on the stack without having to overwrite the canary
first.

ProPolice [Etoh and Yoda 2000] is the most popular variation of the stack canaries
countermeasure. It reorders the local variables of a function on the stack, in order to
make sure that buffers are placed as close to the canary as possible. However, even
ProPolice is still vulnerable to information leakage [Strackx et al. 2009], format string
vulnerabilities [Lhee and Chapin 2003], or any attack that does not target the stack
(for example, heap-based buffer overflows). It will also not emit the canary for every
function, which can lead to vulnerabilities4.

Address Space Layout Randomization (ASLR, [Bhatkar et al. 2003]) randomizes
the base address of important structures such as the stack, heap, and libraries, making
it more difficult for attackers to find their injected shellcode in memory. Even if they
succeed in overwriting a code pointer, they will not know where to point it to.

ASLR raises the security bar at no performance cost. However, there are different
ways to get around the protection it provides. ASLR is susceptible to information leak-
age, in particular buffer-overreads [Strackx et al. 2009] and format string vulnerabili-
ties [Lhee and Chapin 2003]. On 32-bit architectures, the amount of randomization is

4CVE-2007-0038

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: 2012.

CPM: Masking Code Pointers to Prevent Code Injection Attacks 0:5

not prohibitively large [Shacham et al. 2004], enabling an attacker to correctly guess
addresses. New attacks also use a technique called heap-spraying [Gadaleta et al.
2010]. Attackers pollute the heap by filling it with numerous copies of their shellcode,
and then jump to somewhere on the heap. Because most of the memory is filled with
their shellcode, there is a good chance that the jump will land on an address that is
part of their shellcode.

Non-executable Memory is supported on most modern CPUs, and allows applica-
tions to mark memory pages as non-executable. Even if the attacker can inject shell-
code into the application and jump to it, the processor would refuse to execute it. There
is no performance overhead when using this countermeasure, and it raises the security
bar quite a bit. However, some processors still do not have this feature, and even if it
is present in hardware, operating systems do not always turn it on by default. Linux
supports non-executable memory, but some distributions do not use it, or only use it
for some memory regions. A reason for not using it, is that it breaks applications that
expect the stack or heap to be executable.

But even applications that use non-executable memory are vulnerable to attack.
Instead of injecting code directly, attackers can inject a specially crafted fake stack.
If the application starts unwinding the stack, it will unwind the fake stack instead of
the original calling stack. This allows an attacker to direct the processor to arbitrary
functions in libraries or program code, and choose which parameters are passed to
these functions. This type of attack is referred to as a return-into-libc attack [Wojtczuk
1998]. A related attack is called return-oriented programming [Shacham 2007], where
a similar effect is achieved by filling the stack with return addresses to specifically
chosen locations in code memory that execute some instructions and then perform a
return. Other attacks exist that bypass non-executable memory by first marking the
memory where they injected their code as executable, and then jumping to it [Anisimov
; skape and Skywing 2005].

Control Flow Integrity (CFI, [Abadi et al. 2005]) is not a widely deployed counter-
measure, but it is discussed here because it is the countermeasure with the closest
relation to CPM. CFI determines a program’s control flow graph beforehand and en-
sures that the program adheres to it. It does this by assigning a unique ID to each
possible control flow destination of a control flow transfer. Before transferring the con-
trol flow to such a destination, the ID of the destination is compared to the expected ID,
and if they are equal, the program proceeds as normal. CFI has been formally proven
correct. Hence, under the assumptions made by the authors, an attacker will never be
able to divert the control flow of an application that is protected with CFI.

CFI is related to CPM in that both countermeasures constrain the control flow of an
application, but the mechanisms that are used to enforce this are different. The eval-
uation in Section 5 shows that CFI gives stronger guarantees, but the model assumes
a weaker attacker and its implementation is substantially slower.

3. CODE POINTER MASKING
Existing countermeasures that protect code pointers can be roughly divided into two
classes. The first class of countermeasures makes it hard for an attacker to change spe-
cific code pointers. An example of this class of countermeasures is Multistack [Younan
et al. 2006]. In the other class, the countermeasures allow an attacker to modify code
pointers, but try to detect these changes before any harm can happen. Examples
of such countermeasures are stack canaries [Cowan et al. 1998], pointer encryption
[Cowan et al. 2003] and CFI [Abadi et al. 2005]. These countermeasures will be fur-
ther explained in Section 7.

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: 2012.

0:6 Philippaerts et al.

This section introduces the Code Pointer Masking (CPM) countermeasure, located
between those two categories of countermeasures. CPM does not prevent overwriting
code pointers, and does not detect memory corruptions, but it makes it hard or even
impossible for an attacker to do something useful with a code pointer.

3.1. General Overview
CPM revolves around two core concepts: code pointers and pointer masking. A code
pointer is a value that is stored in memory and that at some point in the application’s
lifetime is copied into the program counter register. If an attacker can change a code
pointer, he will also be able to influence the control flow of the application.

CPM introduces masking instructions to mitigate the effects of a changed code
pointer. After loading a (potentially changed) code pointer from memory into a register,
but before actually using the loaded value, the value will be sanitized by combining it
with a specially crafted and pointer-specific bit pattern. This process is called pointer
masking. Even though an application may still have memory management vulnerabil-
ities, it becomes much harder for the attacker to exploit them in a way that might be
useful.

By applying a mask, CPM will be able to selectively set or unset specific bits in the
code pointer. Hence, it is an efficient mechanism to limit the range of addresses that
are possible. Any bitwise operator (e.g. AND, OR, BIC (bit clear — AND NOT), ...)
can be used to apply the mask on the code pointer. Which operator should be selected
depends on how the layout of the program memory is defined. On Linux, using an AND
or a BIC operator is sufficient.

The computation of the mask is done at link time, and depends on the type of code
pointer. For instance, generating a mask to protect the return value of a function dif-
fers from generating a mask to protect function pointers. An overview of the different
computation strategies is given in the following sections. The masks are not secret and
no randomization whatsoever is used. An attacker can find out the values of the dif-
ferent masks in a target application by simply compiling the same source code with
a CPM compiler. Knowing the masks will not aid the attacker in circumventing the
masking process. It can, however, give the attacker an idea of which memory locations
can still be returned to. But due to the narrowness of the masks (see Section 5.1), it is
unlikely that these locations will be interesting for the attacker.

3.2. Assumptions
The design of CPM provides protection even against powerful attackers. It is, however,
essential that two assumptions hold:

(1) Program code is non-writable. If the attacker can arbitrarily modify program code,
it is possible to remove the masking instructions that CPM adds. This defeats the
entire masking process, and hence the security of CPM. Non-writable program code
is the standard nowadays, so this assumption is more than reasonable.

(2) Code injection attacks overwrite a code pointer eventually. CPM protects code point-
ers, so attacks that do not overwrite code pointers are not stopped. However, all
known attacks that allow an attacker to execute arbitrary code overwrite at least
one code pointer.

3.3. Masking the Return Address
The return address of a function is one of the most popular code pointers that is used
in attacks to divert the control flow. In a prototypical function epilogue, the return
address is first retrieved from the stack and copied into a register. Then, the processor
is instructed to jump to the address in the register. Using for instance a stack based

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: 2012.

CPM: Masking Code Pointers to Prevent Code Injection Attacks 0:7

buffer overflow, the attacker can overwrite the return address on the stack. Then, when
the function executes its epilogue, the program will retrieve the modified address from
the stack, store it into a register, and will jump to an attacker-controlled location in
memory.

CPM mitigates this attack by inserting a masking instruction in between. Before the
application jumps to the code pointer, the pointer is first modified in such a way that
it cannot point to a memory location that falls outside of the code section.

Arguments/Environment

Stack

Unused and

Shared Memory

Heap

Static & Global Data

Program Code

Fig. 2. Stack, heap and program code memory layout for a Linux application

Example The following example illustrates address masking for the Linux operating
system. It should be noted that on other operating systems, the countermeasure may
need different masking operations than those used here, but the concept remains the
same on any system.
As shown in Figure 2, program data, heap and stack are located above the program
code in memory. For illustrative purposes, the program code is assumed to range from
0x00000000 to 0x0000FFFF, thus stack and heap are located on memory addresses
larger than 0x0000FFFF.
For each function in the application, the epilogue is changed from fetching the return
address and jumping to it, to fetching the return address, performing an AND opera-
tion with the mask 0x0000FFFF on the return address, and then jumping to the result.
Memory addresses that point to the stack or heap will have at least one bit of the two
most significant bytes set. These bits will be cleared, however, because of the AND
operation. As a result, before the memory address reaches the JUMP instruction, it
will be properly sanitized to ensure that it can only point to a location within the code
segment.

Even though an application may still have buffer overflow vulnerabilities, it becomes
much harder for the attacker to exploit them in a way that might be useful. If the
attacker is able to modify the return address of the function, he is only able to jump to
existing program code.

The mask is function-specific and is calculated by combining the addresses of the
different return sites of the function using an OR operation. In general, the quality of

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: 2012.

0:8 Philippaerts et al.

a return address mask is proportional to the number of return sites that the mask must
allow. Hence, fewer return sites results on average in a better mask. As the evaluation
in Section 5.2 shows, it turns out that most functions in an application have only a few
callers.

However, the quality is also related to how many bits are set in the actual addresses
of the return sites, and how many bits of the different return addresses overlap. Addi-
tional logic can be added to the compiler to move methods around, in order to optimize
these parameters.

Example Assume that we have two methods M1 and M2, and that these methods are
the only methods that call a third method M3. Method M3 can return to a location
somewhere in M1 or M2. If we know during the compilation of the application that
these return addresses are located at memory location 0x0B3E (0000101100111110)
for method M1 and memory location 0x0A98 (0000101010011000) for method M2, we
can compute the mask of method M3 by ORing the return sites together. The final
mask that will be used is mask 0x0BBE (0000101110111110).
By ANDing this generated mask and the return address, the result of this operation
is limited to the return locations in M1 and M2, and to a limited number of other
locations. However, most of the program memory will not be accessible anymore, and
all other memory outside the program code section (for example, the stack, the heap,
library memory, . . .) will be completely unreachable.

3.4. Masking Function Pointers
It is very difficult to statically analyze a C program to know beforehand which po-
tential addresses can be called from some specific function pointer call. CPM solves
this by overestimating the mask it uses. During the compilation of the program, CPM
scans through the source code of the application and detects for which functions the
address is taken, and also detects where function pointer calls are located. It changes
the masks of the functions that are called to ensure that they can also return to any
return site of a function pointer call. In addition, the masks that are used to mask the
function pointers are selected in such a way that they allow a jump to all the different
functions whose addresses have been taken somewhere in the program. As Section 5.1
shows, this has no important impact on the quality of the masks of the programs in
the benchmark.

The computation of the function pointer mask is similar to the computation of the
return address masks. The compiler generates a list of functions whose addresses are
taken in the program code. These addresses are combined using an OR operation into
the final mask that will be used to protect all the function pointer calls.

A potential issue is that calls of function pointers are typically implemented as a
JUMP <register> instruction. There is a very small chance that if the attacker is able
to overwrite the return address of a function and somehow influence the contents of
this register, that he can put the address of his shellcode in the register and modify
the return address to point to this JUMP <register> instruction. Even if this jump is
preceded by a masking operation, the attacker can skip this operation by returning to
the JUMP instruction directly. Although the chances for such an attack to work are
extremely low (the attacker has to be able to return to the JUMP instruction, which
will in all likelihood be prevented by CPM in the first place), CPM specifically adds
protection to counter this threat.

The solutions to this problem depend on the processor architecture. For example,
CPM can reserve a register that is used exclusively to perform the masking of code
pointers. This will make sure that the attacker can never influence the contents of this

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: 2012.

CPM: Masking Code Pointers to Prevent Code Injection Attacks 0:9

register. The impact of this particular solution will differ from processor to processor,
because it increases the register pressure. However, as the performance evaluation in
Section 5.1 shows, on the ARM and x64 architectures this is a good solution.

3.5. Masking the Global Offset Table
A final class of code pointers that deserves special attention are entries in the global
offset table (GOT). The GOT is a table that is used to store offsets to objects that do
not have a static location in memory. This includes addresses of dynamically loaded
functions that are located in libraries.

At program startup, these addresses are initialized to point to a helper method that
loads the required library. After loading the library, the helper method modifies the
addresses in the GOT to point to the library method directly. Hence, the second time
the application tries to call a library function, it will jump immediately to the library
without having to go through the helper method.

Overwriting entries in the GOT by means of indirect pointer overwriting is a com-
mon attack technique. By overwriting addresses in the GOT, an attacker can redirect
the execution flow to his shellcode. When the application unsuspectedly calls the li-
brary function whose address is overwritten, the attacker’s shellcode is executed in-
stead.

Like the other code pointers, the pointers in the GOT are protected by masking them
before they are used. Since all libraries are loaded into a specific memory range (e.g.
0x4NNNNNNN on 32-bit Linux systems, 0x7FNNNNNNNNNN on 64-bit Linux), all
code pointers in the GOT must either be somewhere in this memory range, or must
point to the helper method (which is located in the program code memory). CPM adds
instructions that ensure this, before using a value from the GOT.

3.6. Masking Other Code Pointers
CPM protects all code pointers in an application. This section contains the code point-
ers that have not been discussed yet, and gives a brief explanation of how they are
protected.

On some systems, when an application shuts down it can execute a number of so-
called destructor methods. The destructor table is a table that contains pointers to
these methods, making it a potential target for a code injection attack. If an attacker
is able to overwrite one of these pointers, he might redirect it to injected code. This
code will then be run when the program shuts down. CPM protects these pointers by
modifying the routine that reads entries from the destructor table.

Applications might also contain a constructor table. This is very similar to the de-
structor table, but runs methods at program startup instead of program shutdown.
This table is not of interest to CPM, because the constructors will have been executed
already before an attacker can start attacking the application and the table is not
further used.

The C standard also offers support for long jumps, a feature that is used infre-
quently. A programmer can save the current program state into memory, and then
later jump back to this point. Since this memory structure contains the location of
where the processor is executing, it is a potential attack target. CPM protects this code
pointer by adding masking operations to the implementation of the longjmp method.

Like many other countermeasures, CPM has to be applied to the entire program to
ensure maximum protection. If there are unprotected code pointers left in the program
code (for example, by statically or dynamically linking with a library that has not
been protected with CPM), an attacker might still find a way to exploit these code
pointers. However, even in the presence of unprotected code, CPM will still greatly

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: 2012.

0:10 Philippaerts et al.

increase the security of the application by significantly reducing the attack surface of
the application.

4. IMPLEMENTATION
This section describes the implementation of the CPM prototype for the ARM and
x64 architecture. The ARM prototype is implemented in gcc-4.4.0 and binutils-2.20
for Linux, whereas the x64 prototype is implemented in gcc-4.6.0 and binutils-2.21 for
Linux.

For GCC, the machine descriptions are changed to emit the masking operations dur-
ing the conversion from RTL5 to assembly. The implementations provide the full CPM
protection for return addresses, function pointers, GOT entries, and the other code
pointers.

4.1. General Overview
The prototypes are implemented as a multistage transformation process on the pro-
gram binary code. The process consists of five steps.

In the first step, the source code of the application is parsed and interpreted using
the ‘C Intermediate Language (CIL)6’ tool. Using this tool, the code is searched for
address of operators on functions. When an application wants to use a function pointer,
it must first acquire a pointer to the function it wants to call. This is done using these
address of operators, so if we know all the functions for which the address is taken, we
know all possible destinations for function pointers. In addition, the tool also creates
for every function a list of caller functions. These lists are needed to calculate the
return address masks.

The second step uses a modified GCC compiler to compile the application into binary
code. This step emits masking instructions for a number of code pointers, such as the
return address and function pointer calls. Section 4.2 shows how the code from function
epilogues is instrumented to protect return addresses. Note, however, that after this
step the masking instructions still use dummy masks that in essence do nothing.

The third step links the object files together and emits a binary file. The linker also
inserts the PLT code as described in Section 4.3, which ensures that the entries in the
GOT will always point to the library code section.

Step four is where the actual CPM magic happens. The binary produced in the previ-
ous step is disassembled and inspected. A script searches for the dummy instructions
that were inserted in step two, calculates the applicable masks and inserts the mask
into the executable. After this step, the resulting binary is almost fully protected.

In the final step, step five, the protection for long jumps is added. In the prototypes
we addressed this by building our own libraries with a protected longjmp implementa-
tion. When the binaries are being run, we use the LD PRELOAD environment variable
to force the application to use our longjmp implementation instead of the one from the
standard C library.

The above steps can be consolidated into the compiler and linker. However, this is a
non-trivial task and does not offer any advantage except better usability of the proto-
types.

4.2. Function Epilogue Modifications
Function returns on ARM generally make use of the LDM instruction. LDM, an acronym
for ‘Load Multiple’, is similar to a POP instruction on x86/x64. But instead of only pop-

5RTL or Register Transfer Language is one of the intermediate representations that is used by GCC during
the compilation process.
6http://cil.sourceforge.net/

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: 2012.

CPM: Masking Code Pointers to Prevent Code Injection Attacks 0:11

ping one value from the stack, LDM pops a variable number of values from the stack into
multiple registers. In addition, the ARM architecture also supports writing directly to
the program counter register. Hence, GCC uses a combination of these two features to
produce an optimized epilogue. Listing 1 shows what this epilogue looks like.

Listing 1: A function prologue and epilogue on ARM.
stmfd sp ! , {<registers >, fp , l r }
. . .
ldmfd sp ! , {<registers >, fp , pc}

The STMFD instruction stores the given list of registers to the address that is pointed
to by the sp register. <registers> is a function-specific list of registers that are modi-
fied during the function call and must be restored afterwards. In addition, the frame
pointer and the link register (that contains the return address) are also stored on the
stack. The exclamation mark after the sp register means that the address in the reg-
ister will be updated after the instruction to reflect the new top of the stack. The ‘FD’
suffix of the instruction denotes in which order the registers are placed on the stack.

Similarly, the LDMFD instruction loads the original values of the registers back from
the stack, but instead of restoring the lr register, the original value of this register is
copied to pc. This causes the processor to jump to this address, and effectively returns
to the parent function.

Listing 2: A CPM function prologue and epilogue on ARM.
stmfd sp ! , {<registers >, fp , l r }
. . .
ldmfd sp ! , {<registers >, fp}
ldr r9 , [sp] , #4
bic r9 , r9 , #0xNN000000
bic r9 , r9 , #0xNN0000
bic r9 , r9 , #0xNN00
bic pc , r9 , #0xNN

Listing 2 shows how CPM rewrites the function epilogue. The LDMFD instruction is
modified to not pop the return address from the stack into PC. Instead, the return
address is popped off the stack by the subsequent LDR instruction into the register r9.
We specifically reserve register r9 to perform all the masking operations of CPM. This
ensures that an attacker will never be able to influence the contents of the register, as
explained in Section 3.4.

Because ARM instructions cannot take 32-bit operands, we must perform the mask-
ing in multiple steps. Every bit-clear (BIC) operation takes an 8-bit operand, which can
be shifted. Hence, four BIC instructions are needed to mask the entire 32-bit address.
In the last BIC operation, the result is copied directly into pc, causing the processor to
jump to this address.

The mask of a function is calculated in the same way as explained in Section 3.3,
with the exception that it is negated at the end of the calculation. This is necessary
because our ARM implementation does not use the AND operator but the BIC operator.

Alternative function epilogues that do not use the LDM instruction are protected in a
similar way. Masking is always done by performing four BIC instructions.

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: 2012.

0:12 Philippaerts et al.

The x64 prototype uses a similar approach, but uses an AND instruction instead. List-
ing 3 shows the replacement instructions for the return instruction. The return ad-
dress is popped from the stack and masked using an AND instruction. The processor
is then instructed to jump to the result. On the x64 prototype, register r10 is used
exclusively to perform CPM masking operations.

Listing 3: A CPM function epilogue on x64.
popq %r10
andq $0xNNNNNNNNNNNNNNNN, %r10
jmpq ∗%r10

4.3. Procedure Linkage Table Entries
As explained in Section 3.5, applications use a structure called the global offset ta-
ble in order to enable the dynamic loading of libraries. However, an application does
not interact directly with the GOT. It interacts with a jump table instead, called the
Procedure Linkage Table (PLT). The PLT consists of PLT entries, one for each library
function that is called in the application. A PLT entry is a short piece of code that loads
the correct address of the library function from the GOT, and then jumps to it.

Listing 4: A PLT entry on ARM that does not perform masking.
add ip , pc , #0xNN00000
add ip , ip , #0xNN000
ldr pc , [ip , #0xNNN] !

Listing 4 shows the standard PLT entry that is used by GCC on the ARM architec-
ture. The address of the GOT entry that contains the address of the library function
is calculated in the ip register. Then, in the last instruction, the address of the library
function is loaded from the GOT into the pc register, causing the processor to jump to
the function.

CPM protects addresses in the GOT by adding masking instructions to the PLT
entries. Listing 5 shows the modified PLT entry.

Listing 5: A PLT entry on ARM that performs masking.
add ip , pc , #0xNN00000
add ip , ip , #0xNN000
ldr r9 , [ip , #0xNNN] !
cmp r9 , #0x10000
orrge r9 , r9 , #0x40000000
bicge pc , r9 , #0xB0000000
bic r9 , r9 , #0xNN000000
bic r9 , r9 , #0xNN0000
bic r9 , r9 , #0xNN00
bic pc , r9 , #0xNN

The first three instructions are very similar to the original code, with the exception
that the address stored in the GOT is not loaded into pc but in r9 instead. Then, the
value in r9 is compared to the value 0x10000.

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: 2012.

CPM: Masking Code Pointers to Prevent Code Injection Attacks 0:13

If the library has not been loaded yet, the address in the GOT will point to the helper
method that initializes libraries. Since this method is always located on a memory ad-
dress below 0x10000, the CMP instruction will modify the status flags to ‘lower than’.
This will force the processor to skip the two following ORRGE and BICGE instructions,
because the suffix ‘GE’ indicates that they should only be executed if the status flag is
‘greater or equal’. The address in r9 is subsequently masked by the four BIC instruc-
tions, and finally copied into pc.

If the library has been loaded, the address in the GOT will point to a method loaded
in the library memory range (0x4NNNNNNN on 32-bit Linux systems). Hence, the
CMP instruction will set the status flag to ‘greater than or equal’, allowing the follow-
ing ORRGE and BICGE instructions to execute. These instructions will make sure that
the most-significant four bits of the address are set to 0x4, making sure that the ad-
dress will always point to the memory range that is allocated for libraries. The BICGE
instruction copies the result into pc.

The x64 implementation of a PLT entry is shown in Listing 6. It consists of a jump that
reads the requested address from the GOT and jumps to it. The values in the GOT are
initialized in such a way that they point to the PUSHQ instruction following the jump.
This makes sure that when the corresponding library has not been loaded into memory
yet, the jump simply falls through to the next instruction.

The PUSHQ instruction pushes a value onto the stack that uniquely identifies the PLT
entry that is being executed. After the push, a jump is performed to the method that
loads the library from disk. This method uses the index on the stack to determine
which library should be loaded.

Listing 6: An unprotected PLT entry on x64.
jmpq ∗name@GOTPC(%rip)
pushq 0xNNNNNNNN
jmp 0xNNNNNNNN

Instead of immediately jumping to the address in the GOT, PLT entries that
are used in the x64 implementation of CPM will first make sure that the address
points to the library address space. On 64-bit Linux, libraries are loaded in the
0x00007FNNNNNNNNNN memory region. Listing 7 shows a modified PLT entry. The
first instruction copies the address in the GOT into the reserved register r10. The ad-
dress is immediately copied into scratch register r11. The value in r11 is then shifted
right for 40 bits, preserving the 8 most significant bits of the address7. These bits are
compared to the value 0x7F. If the address in the GOT points to a function in a library,
the eight most significant bits of the address should be equal to 0x7F. If this is not the
case, we assume that the library has not been loaded into memory yet. If the CMP in-
struction sets the equals flag, the JMPQ instruction is executed and the processor jumps
to the address stored in r10. If this flag is not set, the processor jumps to the PUSHQ
instruction, and the library loading process continues as in an unmodified PLT entry.

One problem with 64-bit Linux versions is that the stack and libraries share the
common address space 0x00007FNNNNNNNNNN. In order to make sure that attack-
ers cannot inject code on the stack, the stack must be moved to another address (which

7In current x64 processor implementations, only 48 bits are addressable. In user space, the top 16 bits will
always be 0.

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: 2012.

0:14 Philippaerts et al.

Listing 7: A protected PLT entry on x64.
mov name@GOTPC(%rip) , %r10
mov %r10,%r11
shr $0x28,%r11
cmp $0x7f ,%r11
jne . stub
jmpq ∗%r10

. stub :
pushq 0xNNNNNNNN
jmp 0xNNNNNNNN

is a small change in the existing ASLR implementation that already changes the mem-
ory range of the stack). Alternatively, making the stack non-executable also solves the
problem; this last option is already implemented in many operating systems.

4.4. Protecting Other Code Pointers
The protection of function pointers is similar to the protection of the return address.
Before jumping to the address stored in a function pointer, it is first masked with four
BIC operations, to ensure the pointer has not been corrupted. Register r9 is also used
here to do the masking, which guarantees that an attacker cannot interfere with the
masking, or jump over the masking operations.

The long jumps feature of C is implemented on the ARM architecture as an STM and
an LDM instruction. The behavior of the longjmp function is very similar to the epilogue
of a function. It loads the contents of a memory structure into a number of registers.
CPM modifies the implementation of the longjmp function in a similar way as the
function epilogues. On ARM, the LDM instruction is changed that it does not load data
into the program counter directly, and four BIC instructions are added to perform the
masking and jump to the masked location.

On x64, the implementation of longjmp is modified to move the stored return address
into reserved register r10 instead of rdx and the jump at the end of the function is
preceded with a masking AND instruction.

4.5. Limitations of the Prototype
In some cases, the CPM prototype cannot calculate the masks without additional in-
put. The first case is when a function is allowed to return to library code. This happens
when a library method receives a pointer to an application function as a parameter,
and then calls this function. This function will return back to the library function
that calls it. In the SPEC benchmark, only one application had one method with this
behavior. The method was used to serve as a comparison function for the quicksort
implementation of libc.

The prototype compiler solves this by accepting a list of function names where the
masking should not be done. This list is program-specific and should be maintained by
the developer of the application.

The second scenario is when an application generates code (e.g. JIT compilers) or
gets a code pointer from a library (e.g. by using a method like GetProcAddress on Win-
dows), and then tries to jump to it. CPM will prevent the application from jumping
to the function pointer, because it is located outside the acceptable memory regions.
A similar solution can be used as described in the previous paragraph, where func-
tion pointers could be marked to alter their masking behavior. For example, a function
pointer that is used to jump to JITted code can be marked to only allow jumps to the
heap. Likewise, a function pointer that is used to jump to libraries can be marked to

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: 2012.

CPM: Masking Code Pointers to Prevent Code Injection Attacks 0:15

only allow jumps to the library address space (similar to the protection of PLT en-
tries, as discussed in Section 4.3). None of the applications in the SPEC benchmark
displayed this behavior.

5. EVALUATION
In this section, we report on the performance of our CPM prototype, and discuss the
security guarantees that CPM provides.

5.1. Compatibility, Performance and Memory Overhead
To test the compatibility and the performance overhead of our ARM prototype, we
ran the SPEC2000 benchmark [Henning 2000] with our countermeasure and without.
All tests were run on a single machine with an ARMv7 processor running at 800MHz,
512Mb RAM, running Ubuntu Linux with kernel 2.6.28. The x64 prototype was bench-
marked using the SPEC2006 benchmark on a machine with an Intel Core2 Duo pro-
cessor running at 2.4GHz, 2Gb RAM, running Ubuntu Linux with kernel 2.6.35.

SPEC CPU2000 Integer benchmarks
Program GCC (s) CPM (s) Overhead Avg. Mask size Jump surface
164.gzip 808 824 +1.98% 10.4 bits 2.02%
175.vpr 2129 2167 +1.78% 12.3 bits 1.98%
176.gcc 561 573 +2.13% 13.8 bits 0.94%
181.mcf 1293 1297 +0.31% 8.3 bits 1.21%

186.crafty 715 731 +2.24% 13.1 bits 3.10%
197.parser 1310 1411 +7.71% 10.7 bits 1.18%

253.perlbmk 809 855 +5.69% 13.2 bits 1.51%
254.gap 626 635 +1.44% 11.5 bits 0.57%

256.bzip2 870 893 +2.64% 10.9 bits 3.37%
300.twolf 2137 2157 +0.94% 12.9 bits 3.17%

Table I: Benchmark results of the CPM countermeasure on the ARM architecture

SPEC CPU2006 Integer benchmarks
Program GCC (s) CPM (s) Overhead

400.perlbench 514 524 +1.95%
401.bzip2 698 716 +2.58%
403.gcc 531 550 +3.58%
429.mcf 646 647 +0.15%

445.gobmk 670 707 +5.52%
456.hmmer 576 587 +1.91%
458.sjeng 739 775 +4.87%

462.libquantum 1178 1175 -0.25%
464.h264ref 994 1015 +2.11%

Table II: Benchmark results of the CPM countermeasure on the x64 architecture

All C programs in the SPEC CPU2000 and CPU2006 Integer benchmarks were used
to perform these benchmarks. Table I and Table II contain the runtime in seconds
when compiled with the unmodified GCC, the runtime when compiled with the CPM
countermeasure, and the percentage of overhead.

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: 2012.

0:16 Philippaerts et al.

Most applications have a performance hit that is less than a few percent, supporting
our claim that CPM is a highly efficient countermeasure. Table I does not contain
results for VORTEX, because it does not work on the ARM architecture. Running this
application with an unmodified version of GCC results in a memory corruption (and
crash).

The memory overhead of CPM is negligible. CPM increases the size of the binary
image of the application slightly, because it adds a few instructions to every function
in the application. CPM also does not allocate or use memory at runtime, resulting in
a memory overhead of practically 0%.

The SPEC benchmark also shows that CPM is highly compatible with existing code.
The programs in the benchmarks add up to a total of about 1,500,000 lines of C code.
All programs were fully compatible with CPM, with the exception of only one applica-
tion where a minor manual intervention was required (see Section 4.5).

5.2. Security Evaluation
As a first step in the evaluation of CPM, two field tests were performed with the pro-
totype. Existing applications and libraries that contain vulnerabilities8 were compiled
with the new countermeasure. For demo purposes, we wrote exploits for the original
vulnerable code and concluded that CPM successfully mitigated the attacks by raising
the bar to exploit these applications. However, even though this gives an indication of
some of the qualities of CPM, it is not a complete security evaluation.

The security evaluation of CPM is split into two parts. In the first part, CPM is
compared to the widely deployed countermeasures. Common attack scenarios are dis-
cussed, and an explanation is given of how CPM protects the application in each case.
The second part of the security evaluation explains which security guarantees CPM
provides, and makes the case for CPM by using the statistics we have gathered from
the benchmarks.

5.2.1. CPM versus Widely Deployed Countermeasures. This section compares CPM with
the widely deployed countermeasures that were introduced in Section 2.2. Some func-
tionality of CPM overlaps with parts of these existing defenses, but CPM also protects
scenarios where (the combination of) these countermeasures do not protect applica-
tions. This section starts by discussing the similarities in protection, and then goes on
to explain how CPM protects against scenarios that are not protected by the current
state of practice.

Stack canaries were introduced to protect return addresses against stack-based
buffer overflows. They are successful against this particular scenario where an at-
tacker overwrites the return address, but as explained in Section 2.2 there are a num-
ber of ways to get around this protection. CPM overlaps with this countermeasure, in
the sense that it also protects return addresses. However, unlike stack canaries, CPM
protects return addresses against any overwrite, including indirect pointer overwrit-
ing.

Address Space Layout Randomization makes it more difficult for attackers to guess
addresses of interesting data structures, such as the stack, heap and libraries. CPM
overlaps in part, because it protects against code injection attacks on the stack or heap.
However, CPM prevents them by disallowing an application to jump to an address on
one of these data structures instead of obfuscating the address. CPM also ensures that
normal application functions cannot return to the library address space.

Finally, non-executable memory marks data structures as non-executable, prevent-
ing attackers from directly injection code into these structures. CPM also protects

8CVE-2006-3459 and CVE-2009-0692

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: 2012.

CPM: Masking Code Pointers to Prevent Code Injection Attacks 0:17

ProPolice ASLR NX1 Combination2

Stack-based buffer overflow IL HS, IL RiC IL+RiC
Heap-based buffer overflow N/A HS, IL RiC IL+RiC, HS+RiC
Indirect pointer overwrite N/A HS, IL RiC IL+RiC, HS+RiC
Dangling pointer references N/A HS, IL RiC IL+RiC, HS+RiC
Format string vulnerabilities N/A HS, IL RiC IL+RiC, HS+RiC

1 = This assumes that all memory, except code and library memory, is marked as non-
executable. On Linux, this depends on the distribution, and is often not the case.
2 = This is the combination of the ProPolice, ASLR and No-Execute countermeasures,
as deployed in modern operating systems.

Table III: An overview of how all the widely deployed countermeasures can be broken
by combining different common attack techniques: Heap spraying (HS), Information
leakage (IL) and Return-into-libc/Return-oriented programming (RiC).

against these attacks, but does it by disallowing an application to jump to an address
in data space.

The aforementioned countermeasures suffer from a number of problems that still
make them vulnerable to exploitation. Table III shows how each of these countermea-
sures (and also their combination) can be broken by using multiple attack techniques.
The rows in the table represent the different vulnerabilities that allow code injection
attacks, and the columns represent the countermeasures.

Each cell in the table contains the (combinations of) attack techniques (see Sec-
tion 2.2) that can be used to break the security of the countermeasure(s). The tech-
niques that are listed in the table are return-into-libc/return-oriented programming
(RiC), information leakage (IL), and heap spraying (HS). CPM is the only counter-
measure that offers protection against all combinations of common attack techniques,
albeit not a provably perfect protection.

Applications that are protected with the three widely deployed countermeasures can
be successfully attacked by using a combination of two common attack techniques. If
the application leaks sensitive information [Strackx et al. 2009], the attacker can use
this information to break ASLR and ProPolice, and use a Return-into-libc attack, or
the newer but related Return-oriented Programming attacks, to break No-Execute.
If the application does not leak sensitive data, the attacker can use a variation of a
typical heap spraying attack to fill the heap with a fake stack and then perform a
Return-into-libc or Return-oriented Programming attack.

CPM protects against Return-into-libc attacks and Return-oriented Programming
attacks [Shacham 2007] by limiting the amount of return sites that the attacker can
return to. Both attacks rely on the fact that the attacker can jump to certain inter-
esting points in memory and abuse existing code (either in library code memory or
application code memory). However, the CPM masks will most likely not give the at-
tacker the freedom he needs to perform a successful attack. In particular, CPM will not
allow returns to library code, and will only allow returns to a limited part of the ap-
plication code. Table I shows for each application the jump surface, which represents
the average surface area of the program code memory that an attacker can jump to
with a masked code pointer (without CPM, these values would all be 100%). Table IV
shows average bit mask sizes and jump surface results of an additional set of popular C
applications that were randomly selected from SourceForge.net and Github.com. The
average mask size is similar to the mask sizes that were seen in the SPEC benchmark
applications, but because many of these applications are quite large, the average jump
surface decreases significantly in some cases compared to the SPEC applications. Due

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: 2012.

0:18 Philippaerts et al.

Program Avg. Mask size Jump surface
git 16.31 bits 3.93%

httpd 10.09 bits 0.13%
vlc 12.56 bits 0.53%

quakespasm 11.13 bits 0.23%
xbmc 11.51 bits 0.02%
flex 14.78 bits 4.54%

wireshark 11.07 bits 0.14%

Table IV: Average bit mask sizes and jump surface results of an additional set of ap-
plications.

to the increasing importance of return-oriented programming, Section 5.2.4 will give a
detailed evaluation of CPM against RoP attacks.

Protection against spraying shellcode on the heap is easy for CPM: the masks will
never allow an attacker to jump to the heap (or any other data structure, such as
the stack), rendering this attack completely useless. An attacker can still spray a
fake stack, but he would then have to perform a successful return-into-libc or return-
oriented programming attack, which is unlikely as explained in the previous para-
graph and Section 5.2.4.

CPM can also not be affected by information that an attacker obtained through mem-
ory leaks, because it uses no secret information. The masks that are calculated by the
compiler are not secret. Even if an attacker knows the values of each individual mask,
this will not aid him in circumventing the CPM masking process. It can give him an
idea of which memory locations can still be returned to, but due to the narrowness of
the masks it is unlikely that these locations will be interesting.

Like many other compiler-based countermeasures, all libraries that an application
uses must also be compiled with CPM. Otherwise, vulnerabilities in these libraries
may still be exploited. However, CPM is fully compatible with unprotected libraries,
thus providing support for linking with code for which the source may not be available.

CPM was designed to provide protection against the class of code injection attacks,
but other types of attacks might still be feasible. In particular, data-only attacks [Er-
lingsson 2007], where an attacker overwrites application data and no code pointers,
are not protected against by CPM.

5.2.2. Combining CPM with Other Countermeasures. CPM can be combined with existing
countermeasures. In particular, stack canaries and non-executable memory are 100%
compatible with the prototype. CPM does not depend for its security on one of these
countermeasures, but because CPM — like the other widely deployed countermeasures
— does not offer a 100% security guarantee, combining all these countermeasures
together is preferred from a defensive point of view.

The story for ASLR is a little bit more complicated. The CPM prototype is compatible
with ASLR, as long as everything except the program code itself is randomized. The
prototype precomputes the masks at link time, so the memory location of methods
cannot be altered later on. This implies that the executables must always be loaded at
the same location in memory (and thus counters the premise of ASLR). However, the
stack, heap and libraries can be randomized without breaking the protections of CPM,
so combining CPM with a weaker version of ASLR is still possible.

This begs the question whether the prototype can be modified to support a full ASLR
implementation (with randomized program code). We leave the implementation to fu-

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: 2012.

CPM: Masking Code Pointers to Prevent Code Injection Attacks 0:19

ture work, but yes, such an implementation is possible. The biggest change would be
to compute the masks at runtime instead of at link time.

The steps described in Section 4.1 will not change, but in the implementation that
supports randomized code step four will have to be done last. Instead of calculating the
masks right after the binary has been linked, the masks will have to be calculated by
the loader. The loader first decides where the program code will be loaded in memory
(using a randomized location), will then load the code into memory, and then a new
step should be added where the loader modifies the code to enable the CPM protections.
These modifications are the same modifications that the current prototype does in step
four: find the dummy instructions in the binary, calculate the applicable masks and
insert the mask into the executable.

It is important to note that even through the loading of the executable may be slowed
down by this process (in the order of maybe a few milliseconds), it will not have an
impact on the performance of the application when it is executing. All mask updates
are done before the application starts executing.

5.2.3. CPM Security Properties. The design of CPM depends on three facts that deter-
mine the security of the countermeasure.

CPM masks all code pointers. Code pointers that are not masked are still potential
attack targets. For the ARM prototype, we mask all the different code pointers that
are described in related papers [Younan et al. 2012; Abadi et al. 2005]. In addition, we
looked at all the code that GCC uses to emit jumps, and verified whether it should be a
target for CPM masking. We found that the list of types of code pointers we introduced
in Section 3 was complete.

Masking is non-bypassable. Every computed jump that is emitted by the compiler
will be masked, but the masking process should not be subverted. All the masking in-
structions CPM emits are located in read-only program code. This guarantees that an
attacker can never modify the instructions themselves. In addition, the attacker will
not be able to skip the masking process. We ensure this by reserving a dedicated reg-
ister and using this register to perform all the masking operations and the computed
jumps.

The masks are narrow. How narrow the masks can be made differs from application
to application and function to function. Functions with few callers will typically gener-
ate more narrow masks than functions with a lot of callers. The assumption that most
functions have only a few callers is supported by the statistics. In the applications of
the SPEC benchmark, 27% of the functions had just one caller, and 55% of the func-
tions had three callers or less. Around 1.20% of the functions had 20 or more callers.
These functions are typically library functions such as memcpy, strncpy, etc. To im-
prove the masks, the compiler shuffles functions around and sprinkles a small amount
of padding in-between the functions. This is to ensure that return addresses contain as
many 0-bits as possible. With this technique, we can reduce the number of bits that are
set to 1 in the different function-specific masks. Without CPM, an attacker can jump
to any address in memory (232 possibilities on a 32-bit machine). Using the techniques
described here, the average number of bits per mask for the applications in the SPEC
benchmark can be brought down to less than 13 bits. As the numbers for ‘jump surface’
in Table I show, this is a significant improvement over unprotected code.

CPM has the same high-level characteristics as the CFI countermeasure, but it de-
fends against a somewhat stronger attack model. In particular, non-executable data
memory is not required for CPM. If the masks can be made so precise that they only
allow the correct return sites, an application protected with CPM will never be able to
divert from the intended control flow. In this case, CPM offers the exact same guaran-

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: 2012.

0:20 Philippaerts et al.

tees that CFI offers. However, in practice, the masks will not be perfect. Hence, CPM
can be seen as an efficient approximation of CFI.

The strength of protection that CPM offers against diversion of control flow depends
on the precision of the masks. An attacker can still jump to any location allowed by
the mask, and for some applications this might still allow interesting attacks. As such,
CPM offers fewer guarantees than CFI. However, given the fact that the masks are
very narrow, it is extremely unlikely that attackers will be able to exploit the small
amount of room they have to maneuver. The SPEC benchmark also shows that CPM
offers a performance that is much better than CFI9. This can be attributed to the fact
that CPM does not access the memory in the masking operations, whereas CFI has
to look up the labels that are stored in the memory. Finally, CPM offers support for
dynamically linked code, a feature that is also lacking in CFI.

5.2.4. CPM and Return-oriented Programming. A relatively new attack technique called
return-oriented programming (RoP) has received a lot of attention from the research
community in recent years. The basic idea of this technique is that an attacker will
first identify a set of short instruction sequences in the program code that end in
a computed jump (called gadgets). In a second step, the attacker will then combine
these gadgets to perform useful computations (and eventually exploit the application).
Shacham proved in [Shacham 2007] that the set of gadgets obtained from libc is Turing
Complete.

Although CPM is not specifically tailored for protection against RoP attacks, the at-
tacks do rely on modifying code pointers and thus will encounter at least one masking
instruction.

First of all, it is important to note that RoP is an attack technique, not a vulnera-
bility. Hence, it can only be used after an attacker has successfully compromised an
application. Therefore, the attacker will need an exploit to jump to the first gadget,
but this (computed) jump will always be masked by CPM. However, due to the nature
of the masking process, there is a chance that the attacker might still be able to jump
to a gadget.

For CPM on the ARM architecture (for which it was originally developed), this is
not a major problem. Because gadgets end in a computed jump, every gadget will be
masked. This means that, even if the attacker passes the first hurdle to get to the first
gadget, he will then need to circumvent the masking again to go to the second gadget,
etc. As the number of gadgets that are required in the exploit code grows, it rapidly
becomes improbable that the attack will be possible.

Attackers on architectures that support executing unaligned instructions (like x64
or x86) can also make use of unaligned gadgets. These gadgets start with one or more
instructions that are executed in an unaligned fashion (essentially by jumping into the
middle of an aligned instruction). This allows attackers to use instruction sequences
that the compiler never specifically intended to embed in the program code. This is
important for CPM, because the compiler might emit unintended computed jumps that
are not preceded by masking instructions. If an attacker can reach one of these gadgets,
he might be able to start a sequence of gadgets that bypasses the masks.

While it is true that CPM on ARM offers better security guarantees against RoP
attacks than CPM on x64, it must be noted that even on the x64 architecture the bar
against RoP attacks is raised (albeit less than on ARM). The attacker will never be
able to avoid the first masking operation when he wants to jump to the first gadget.

9CFI has an overhead of up to 45%, with an average overhead of 16% on the Intel x86 architecture. The re-
sults are difficult to compare, because our results are measured on the ARM and x64 architectures, however
because CFI does a memory lookup for every computed jump it encounters, where CPM does not, it is fair to
say that CPM will be much faster on any architecture.

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: 2012.

CPM: Masking Code Pointers to Prevent Code Injection Attacks 0:21

Hence, there is a good chance that the attacker will not be able to reach any of the gad-
gets he needs to circumvent the masking operations. All the aligned gadgets are still
protected by masking operations, so he loses a substantial amount of freedom to write
a successful exploit. Furthermore, an approach as defined in [Onarlioglu et al. 2010]
can be adopted to enforce aligned execution with only a minor impact on performance.

Exploit writers have built tools to automatically search for usable gadgets in bina-
ries. In order to obtain some statistics, we tested one such tool on a large application.
A number of free tools exist for the x86 architecture, but we could not immediately find
similar tools for the x64 or the ARM architecture. That is why we implemented a third
partial CPM prototype for x86, with the sole purpose of gathering these statistics. The
prototype supports masking return addresses.

The freely available ROPGadget10 tool was used to retrieve all the gadgets from
the binary of the Apache web server version 2.4.2. We chose the Apache web server,
because it is commonly used, has a large attack surface, a significant code base, and is
written in pure C.

ROPGadget identified 4238 gadgets in the binary. Out of all the functions that were
present in the Apache binary, 57.75% were prevented to return to any gadget by the
CPM masking procedure. Over 70% of functions could return to only 10 or less gad-
gets. Interestingly (but somewhat expected), there is a spike on the other side of the
spectrum, with 23 functions (2.33% of the total) being able to jump to any gadget.

These statistics tell us that CPM significantly raises the bar. In fact, for more than
half of the functions, the mask is perfect (from a defense point of view). However, a
small fraction of the functions have the worst possible mask. These functions are func-
tions that are used throughout the entire application, and consist mostly of memory
management functions. In Section 6, we discuss future work that can be used in this
case to improve the masks and make them arbitrarily precise.

6. DISCUSSION AND ONGOING WORK
CPM overlaps in part with other countermeasures, but also protects against attacks
that are not covered. Vice versa, there are some attacks that might work on CPM (e.g.
attacks that do not involve code injection, such as data-only attacks), which might not
work with other countermeasures. Hence, CPM is complementary to existing security
measures, and in particular can be combined with popular countermeasures such as
stack canaries, non-executable memory and ASLR11. Adding CPM to the mix of ex-
isting protections significantly raises the bar for attackers wishing to perform a code
injection attack. One particular advantage of CPM is that it offers protection against
a combination of different attack techniques, unlike the current combination of widely
deployed countermeasures.

When an attacker overwrites a code pointer somewhere, CPM does not detect this
modification. Instead it will mask the code pointer and jump to the sanitized address.
An attacker can still crash the application by writing rubbish in the code pointer. The
processor would jump to the masked rubbish address, and will very likely crash at
some point. But most importantly, the attacker will not be able to execute his payload.
CPM can be modified to detect any changes to the code pointer, and abort the applica-
tion in that case. This functionality can be implemented in 7 ARM instructions (instead
of 4 instructions), but does temporarily require a second register for the calculations.

The mechanism of CPM can be ported to multiple architectures. Two prototypes
have been implemented on vastly different processor architectures, that differ in ar-

10http://shell-storm.org/project/ROPgadget/
11When everything except the program code is randomized. Support for randomized program code is future
work.

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: 2012.

0:22 Philippaerts et al.

chitecture type (RISC vs. CISC), instruction set (ARM vs. x64), and word size (32-bit
vs. 64-bit). Similar performance characteristics are observed.

A promising direction of future work is processor-specific enhancements. In partic-
ular, on the ARM processor, the conditional execution feature may be used to further
narrow down the destination addresses that an attacker can use to return to. Condi-
tional execution allows almost every instruction to be executed conditionally, depend-
ing on certain status bits. If these status bits are flipped when a return from a function
occurs, and flipped again at the different (known) return sites in the application, the
attacker is forced to jump to one of these return addresses, or else he will land on an
instruction that will not be executed by the processor.

We are also investigating a new mask optimization technique where we detect when
a function’s mask it too imprecise, and duplicate the function code in the binary. Impre-
cise masks are typically caused by functions that have many callers, so by duplicating
the function we can distribute the callers over two (or more) different copies of the
function. In this way, we can arbitrarily increase the mask precision at the cost of us-
ing more memory to store program code. An initial prototype where functions were
duplicated for every caller (essentially generating the perfect mask for every function)
proved very promising. The SPEC benchmark showed that it had an average overhead
of almost 0%, at the cost of a substantial code increase.

7. RELATED WORK
Many countermeasures have been designed to protect against code injection attacks.
In this section, we briefly highlight the differences between our approach and other
approaches that protect programs against attacks on memory error vulnerabilities.
For a more complete survey of code injection countermeasures, we refer the reader to
[Younan et al. 2010a].

Bounds checkers Bounds checking [Kendall 1983; Steffen 1992; Austin et al. 1994;
Jones and Kelly 1997; Lhee and Chapin 2002; Oiwa et al. 2002; Patil and Fischer
1997] is a better solution to buffer overflows, however when implemented for C, it has
a severe impact on performance and may cause existing code to become incompatible
with bounds checked code. Recent bounds checkers [Akritidis et al. 2009; Younan et al.
2010b] have improved performance somewhat, but still do not protect against dangling
pointer vulnerabilities, format string vulnerabilities, and others.

Safe languages Safe languages are languages where it is generally not possible for
any known code injection vulnerability to exist as the language constructs prevent
them from occurring. A number of safe languages are available that will prevent these
kinds of implementation vulnerabilities entirely. There are safe languages [Jim et al.
2002; Necula et al. 2002; Larus et al. 2004; Kowshik et al. 2002] that remain as close
to C or C++ as possible, and are generally referred to as safe dialects of C. While some
safe languages [Condit et al. 2003; Xu et al. 2004] try to stay compatible with existing C
programs, use of these languages may not always be practical for existing applications.

Probabilistic countermeasures Many countermeasures make use of randomness
when protecting against attacks. Many different approaches exist when using ran-
domness for protection. Canary-based countermeasures [Cowan et al. 1998; Etoh and
Yoda 2000; Krennmair 2003; Robertson et al. 2003] use a secret random number that
is stored before an important memory location: if the random number has changed
after some operations have been performed, then an attack (or memory corruption)
has been detected. Memory-obfuscation countermeasures [Cowan et al. 2003; Bhatkar
and Sekar 2008] encrypt important memory locations using random numbers. Mem-

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: 2012.

CPM: Masking Code Pointers to Prevent Code Injection Attacks 0:23

ory layout randomizers [The PaX Team ; Bhatkar et al. 2003; Xu et al. 2003; Bhatkar
et al. 2005] randomize the layout of memory by loading the stack and heap at random
addresses and by placing random gaps between objects. Instruction set randomizers
[Barrantes et al. 2003; Kc et al. 2003] encrypt the instructions while in memory and
will decrypt them before execution.

While these approaches are often efficient, they rely on keeping memory locations
secret. Different attacks exist where the attacker is able exploit leaks to read the mem-
ory of the application [Strackx et al. 2009]. Such memory leaking vulnerabilities can
allow attackers to bypass this type of countermeasure.

Separation and replication of information Countermeasures that rely on separa-
tion or replication of information will try to replicate valuable control-flow information
or will separate this information from regular data. This makes it harder for an at-
tacker to overwrite this information using an overflow. Some countermeasures will
simply copy the return address from the stack to a separate stack and will compare it
to or replace the return addresses on the regular stack before returning from a func-
tion [Chiueh and Hsu 2001]. These countermeasures are easily bypassed using indirect
pointer overwriting where an attacker overwrites a different memory location instead
of the return address by using a pointer on the stack. More advanced techniques try to
separate all control-flow data (like return addresses and pointers) from regular data
[Younan et al. 2006], making it harder for an attacker to use an overflow to overwrite
this type of data.

While these techniques can efficiently protect against buffer overflows that try to
overwrite control-flow information, they do not protect against attacks where an at-
tacker controls an integer that is used as an offset from a pointer.

Another widely deployed countermeasure differentiates between memory that con-
tains code and memory that contains data. Data memory is marked as non-executable
[The PaX Team]. This simple countermeasure is effective against direct code injection
attacks (i.e. attacks where the attacker injects code as data), but provides no protection
against indirect code injection attacks such as return-to-libc attacks. CPM can provide
protection against both direct and indirect code injection.

Removal of Gadgets A number of countermeasures are aimed specifically at the
prevention of return-oriented programming attacks. Early work focussed on protect-
ing the stack [Davi et al. 2011] or keeping track of the ratio of return instructions
[Chen et al. 2009; Davi et al. 2009]. However, these solutions do not adequately pro-
tect against RoP attacks; in particular, none of these countermeasures prevents an
attacker from using gadgets that do not use the return instruction.

Other solutions modify the compilation process to ensure that no (usable) gadgets
are present in the resulting binary. G-Free [Onarlioglu et al. 2010] replaces so-called
free-branch instructions by a small set of instructions that verify the code pointer.
However, G-Free uses a secret value to protect code pointers, and can be exploited
by information leakage vulnerabilities [Strackx et al. 2009]. Furthermore, the perfor-
mance of G-Free is unclear. The authors report a performance close to that of CPM,
however their benchmarks for application-wide overhead consist of IO-bounded appli-
cations that are not control flow intensive.

Work by Li [Li et al. 2010] prevents the existence of gadgets in the kernel. Due to
the fact that this countermeasure is geared towards kernel-level protection and that
it only protects against return-oriented programming attacks, it is difficult to compare
it with CPM. However, the authors report benchmark results (with full protection)
between 5.78% and 17.32%, well over the performance overhead of CPM.

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: 2012.

0:24 Philippaerts et al.

Software Fault Isolation Software Fault Isolation (SFI) [Wahbe et al. 1993; Mcca-
mant and Morrisett 2006] was not developed as a countermeasure against code injec-
tion attacks in C, but it does have some similarities with CPM. In SFI, data addresses
are masked to ensure that untrusted code cannot (accidentally) modify parts of mem-
ory. CPM on the other hand masks code addresses to ensure that control flow can not
jump to parts of memory.

Execution monitors Some existing countermeasures monitor the execution of a pro-
gram and prevent transferring control-flow which can be unsafe.

Program shepherding [Kiriansky et al. 2002] is a technique that monitors the exe-
cution of a program and will disallow control-flow transfers 12 that are not considered
safe. An example of a use for shepherding is to enforce return instructions to only
return to the instruction after the call site. The proposed implementation of this coun-
termeasure is done using a runtime binary interpreter. As a result, the performance
impact of this countermeasure is significant for some programs, but acceptable for oth-
ers.

Control-flow integrity (CFI, [Abadi et al. 2005]), as discussed in Section 5.2.3, is
also a countermeasure that is classified as an execution monitor. Control-Flow Lock-
ing (CFL, [Bletsch et al. 2011]) is an interesting variation of CFI. By relaxing the
constraint that an attack should immediately be detected, CFL optimizes the perfor-
mance of CFI. CFL limits itself to the protection against return-oriented programming.
It would not, for example, stop a direct code injection attack on the stack or heap, like
CPM would13. Although the performance of CFL is good, CPM has less than half the
overhead of CFL and is in some cases over 10x faster.

8. CONCLUSION
The statistics and recent high-profile security incidents show that code injection at-
tacks are still a very important security threat. There are different ways in which a
code injection attack can be performed, but they all share the same characteristic in
that they all overwrite a code pointer at some point.

CPM provides an efficient mechanism to strongly mitigate the risk of code injection
attacks in C programs. By masking code pointers before they are used, CPM imposes
restrictions on these pointers that render them useless to attackers.

CPM offers an excellent performance/security trade-off. It severely limits the risk of
code injection attacks, at only a very small performance cost. It seems to be well-suited
for handheld devices with slow processors and little memory, and can be combined with
other countermeasures in a complementary way.

ACKNOWLEDGMENTS

The work reported on in this paper builds on joint research performed with and supported by DOCOMO
Euro-Labs in 2008-2009.

The authors wish to thank Raoul Strackx for his interesting input during the development of the x64
prototype.

This research is partially funded by the Interuniversity Attraction Poles Programme Belgian State, Bel-
gian Science Policy, by the Research Fund K.U.Leuven, and by the EU-funded FP7-project NESSoS.

12Such a control flow transfer occurs when e.g., a call or ret instruction is executed.
13The authors of CFL assume the stack and heap will always be non-executable, which would stop a direct
code injection attack, but it is our opinion that having multiple defenses in place against an attack is a better
option.

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: 2012.

CPM: Masking Code Pointers to Prevent Code Injection Attacks 0:25

REFERENCES
ABADI, M., BUDIU, M., ERLINGSSON, U., AND LIGATTI, J. 2005. Control-flow integrity. In Proceedings of the

12th ACM Conference on Computer and Communications Security. ACM, Alexandria, Virginia, U.S.A.,
340–353.

AKRITIDIS, P., COSTA, M., CASTRO, M., AND HAND, S. 2009. Baggy bounds checking: An efficient and
backwards-compatible defense against out-of-bounds errors. In Proceedings of the 18th USENIX Secu-
rity Symposium. Montreal, QC.

ANISIMOV, A. Defeating Microsoft Windows XP SP2 heap protection and DEP bypass.
AUSTIN, T. M., BREACH, S. E., AND SOHI, G. S. 1994. Efficient detection of all pointer and array access

errors. In Proceedings of the ACM SIGPLAN ’94 Conference on Programming Language Design and
Implementation. ACM.

BARRANTES, E. G., ACKLEY, D. H., FORREST, S., PALMER, T. S., STEFANOVIĆ, D., AND ZOVI, D. D. 2003.
Randomized instruction set emulation to disrupt binary code injection attacks. In Proceedings of the
10th ACM Conference on Computer and Communications Security (CCS2003). ACM, 281–289.

BHATKAR, S., DUVARNEY, D. C., AND SEKAR, R. 2003. Address obfuscation: An efficient approach to com-
bat a broad range of memory error exploits. In Proceedings of the 12th USENIX Security Symposium.
USENIX Association.

BHATKAR, S. AND SEKAR, R. 2008. Data space randomization. In Proceedings of the 5th Conference on
Detection of Intrusions and Malware & Vulnerability Assessment. Lecture Notes in Computer Science
Series, vol. 5137. Springer.

BHATKAR, S., SEKAR, R., AND DUVARNEY, D. C. 2005. Efficient techniques for comprehensive protection
from memory error exploits. In 14th USENIX Security Symposium. USENIX Association, Baltimore,
MD.

BLETSCH, T., JIANG, X., AND FREEH, V. 2011. Mitigating code-reuse attacks with control-flow locking. In
Proceedings of the 27th Annual Computer Security Applications Conference. ACM, 353–362.

CHEN, P., XIAO, H., SHEN, X., YIN, X., MAO, B., AND XIE, L. 2009. Drop: Detecting return-oriented pro-
gramming malicious code. Information Systems Security, 163–177.

CHIUEH, T. AND HSU, F. H. 2001. RAD: A compile-time solution to buffer overflow attacks. In Proceedings
of the 21st International Conference on Distributed Computing Systems. IEEE Computer Society, IEEE
Press, Phoenix, Arizona, USA, 409–420.

CONDIT, J., HARREN, M., MCPEAK, S., NECULA, G. C., AND WEIMER, W. 2003. CCured in the real world.
In Proceedings of the ACM SIGPLAN 2003 Conference on Programming Language Design and Imple-
mentation. ACM, San Diego, California, U.S.A., 232–244.

COWAN, C., BEATTIE, S., JOHANSEN, J., AND WAGLE, P. 2003. PointGuard: protecting pointers from buffer
overflow vulnerabilities. In Proceedings of the 12th USENIX Security Symposium. USENIX Association,
91–104.

COWAN, C., PU, C., MAIER, D., HINTON, H., WALPOLE, J., BAKKE, P., BEATTIE, S., GRIER, A., WAGLE,
P., AND ZHANG, Q. 1998. StackGuard: Automatic adaptive detection and prevention of buffer-overflow
attacks. In Proceedings of the 7th USENIX Security Symposium. USENIX Association, San Antonio,
Texas, U.S.A.

DAVI, L., SADEGHI, A., AND WINANDY, M. 2009. Dynamic integrity measurement and attestation: towards
defense against return-oriented programming attacks. In Proceedings of the 2009 ACM workshop on
Scalable trusted computing. ACM, 49–54.

DAVI, L., SADEGHI, A., AND WINANDY, M. 2011. Ropdefender: A detection tool to defend against return-
oriented programming attacks. In Proceedings of the 6th ACM Symposium on Information, Computer
and Communications Security. ACM, 40–51.

ERLINGSSON, U. 2007. Low-level software security: Attacks and defenses. Tech. Rep. MSR-TR-2007-153,
Microsoft Research.

ETOH, H. AND YODA, K. 2000. Protecting from stack-smashing attacks. Tech. rep., IBM Research Divison.
June.

GADALETA, F., YOUNAN, Y., AND JOOSEN, W. 2010. Bubble: A javascript engine level countermeasure
against heap-spraying attacks. In Proceedings of the International Symposium on Engineering Secure
Software and Systems (ESSOS).

HENNING, J. L. 2000. Spec cpu2000: Measuring cpu performance in the new millennium. Computer 33, 7,
28–35.

JIM, T., MORRISETT, G., GROSSMAN, D., HICKS, M., CHENEY, J., AND WANG, Y. 2002. Cyclone: A safe di-
alect of C. In USENIX Annual Technical Conference. USENIX Association, Monterey, California, U.S.A.,
275–288.

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: 2012.

0:26 Philippaerts et al.

JONES, R. W. M. AND KELLY, P. H. J. 1997. Backwards-compatible bounds checking for arrays and pointers
in C programs. In Proceedings of the 3rd International Workshop on Automatic Debugging. Number
009-02 in Linköping Electronic Articles in Computer and Information Science. Linköping University
Electronic Press.

KC, G. S., KEROMYTIS, A. D., AND PREVELAKIS, V. 2003. Countering code-injection attacks with
instruction-set randomization. In Proceedings of the 10th ACM Conference on Computer and Communi-
cations Security (CCS2003). ACM, Washington, D.C., U.S.A., 272–280.

KENDALL, S. C. 1983. Bcc: Runtime checking for C programs. In Proceedings of the USENIX Summer 1983
Conference. USENIX Association, Toronto, Ontario, Canada, 5–16.

KIRIANSKY, V., BRUENING, D., AND AMARASINGHE, S. 2002. Secure execution via program shepherding. In
Proceedings of the 11th USENIX Security Symposium. USENIX Association, San Francisco, California,
U.S.A.

KOWSHIK, S., DHURJATI, D., AND ADVE, V. 2002. Ensuring code safety without runtime checks for real-
time control systems. In Proceedings of the International Conference on Compilers Architecture and
Synthesis for Embedded Systems. Grenoble, France, 288–297.

KRENNMAIR, A. 2003. ContraPolice: a libc extension for protecting applications from heap-smashing at-
tacks.

LARUS, J. R., BALL, T., DAS, M., DELINE, R., FÄHNDRICH, M., PINCUS, J., RAJAMANI, S. K., AND
VENKATAPATHY, R. 2004. Righting software. IEEE Software 21, 3, 92–100.

LHEE, K. S. AND CHAPIN, S. J. 2002. Type-assisted dynamic buffer overflow detection. In Proceedings of
the 11th USENIX Security Symposium. USENIX Association, San Francisco, California, U.S.A., 81–90.

LHEE, K. S. AND CHAPIN, S. J. 2003. Buffer overflow and format string overflow vulnerabilities. Software:
Practice and Experience 33, 5, 423–460.

LI, J., WANG, Z., JIANG, X., GRACE, M., AND BAHRAM, S. 2010. Defeating return-oriented rootkits with
return-less kernels. In Proceedings of the 5th European conference on Computer systems. ACM, 195–208.

MCCAMANT, S. AND MORRISETT, G. 2006. Evaluating SFI for a CISC architecture. In Proceedings of the
15th USENIX Security Symposium. USENIX Association, Vancouver, British Columbia, Canada.

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY. National vulnerability database statistics.
http://nvd.nist.gov/statistics.cfm.

NECULA, G., MCPEAK, S., AND WEIMER, W. 2002. CCured: Type-safe retrofitting of legacy code. In Con-
ference Record of POPL 2002: The 29th SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. ACM, Portland, Oregon, U.S.A., 128–139.

OIWA, Y., SEKIGUCHI, T., SUMII, E., AND YONEZAWA, A. 2002. Fail-safe ANSI-C compiler: An approach
to making C programs secure: Progress report. In Proceedings of International Symposium on Software
Security 2002.

ONARLIOGLU, K., BILGE, L., LANZI, A., BALZAROTTI, D., AND KIRDA, E. 2010. G-free: Defeating return-
oriented programming through gadget-less binaries. In Proceedings of the 26th Annual Computer Secu-
rity Applications Conference. ACM, 49–58.

PATIL, H. AND FISCHER, C. N. 1997. Low-Cost, Concurrent Checking of Pointer and Array Accesses in C
Programs. Software: Practice and Experience 27, 1.

PHILIPPAERTS, P., YOUNAN, Y., MUYLLE, S., PIESSENS, F., LACHMUND, S., AND WALTER, T. 2011. Code
pointer masking: Hardening applications against code injection attacks. In Proceedings of the Eighth
Conference on Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA). Amsterdam,
The Netherlands.

ROBERTSON, W., KRUEGEL, C., MUTZ, D., AND VALEUR, F. 2003. Run-time detection of heap-based over-
flows. In Proceedings of the 17th Large Installation Systems Administrators Conference. USENIX Asso-
ciation.

SHACHAM, H. 2007. The geometry of innocent flesh on the bone: Return-into-libc without function calls (on
the x86). In Proceedings of the 14th ACM conference on Computer and communications security. ACM,
ACM Press, Washington, D.C., U.S.A., 552–561.

SHACHAM, H., PAGE, M., PFAFF, B., GOH, E. J., MODADUGU, N., AND BONEH, D. 2004. On the Effec-
tiveness of Address-Space Randomization. In Proceedings of the 11th ACM conference on Computer and
communications security.

SKAPE AND SKYWING. 2005. Bypassing windows hardware-enforced data execution prevention. Unin-
formed 2.

STEFFEN, J. L. 1992. Adding run-time checking to the portable C compiler. Software: Practice and Experi-
ence 22, 4, 305–316.

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: 2012.

CPM: Masking Code Pointers to Prevent Code Injection Attacks 0:27

STRACKX, R., YOUNAN, Y., PHILIPPAERTS, P., PIESSENS, F., LACHMUND, S., AND WALTER, T. 2009. Break-
ing the memory secrecy assumption. In Proceedings of the European Workshop on System Security (Eu-
rosec). Nuremberg, Germany.

THE PAX TEAM. Documentation for the PaX project.
WAHBE, R., LUCCO, S., ANDERSON, T. E., AND GRAHAM, S. L. 1993. Efficient software-based fault iso-

lation. In Proceedings of the 14th ACM Symposium on Operating System Principles. ACM, Asheville,
North Carolina, U.S.A.

WOJTCZUK, R. 1998. Defeating solar designer non-executable stack patch. Posted on the Bugtraq mail-
inglist.

XU, J., KALBARCZYK, Z., AND IYER, R. K. 2003. Transparent runtime randomization for security. In 22nd
International Symposium on Reliable Distributed Systems (SRDS’03). IEEE Computer Society, IEEE
Press, Florence, Italy.

XU, W., DUVARNEY, D. C., AND SEKAR, R. 2004. An Efficient and Backwards-Compatible Transformation
to Ensure Memory Safety of C Programs. In Proceedings of the 12th ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ACM, ACM Press, 117–126.

YOUNAN, Y., JOOSEN, W., AND PIESSENS, F. 2010a. Runtime countermeasures for code injection attacks
against c and c++ programs. ACM Computing Surveys.

YOUNAN, Y., JOOSEN, W., AND PIESSENS, F. 2012. Runtime countermeasures for code injection attacks
against c and c++ programs. ACM Computing Surveys 44, 3, 17:1–17:28.

YOUNAN, Y., PHILIPPAERTS, P., CAVALLARO, L., SEKAR, R., PIESSENS, F., AND JOOSEN, W. 2010b.
Paricheck: An efficient pointer arithmetic checker for c programs. In Proceedings of the ACM Symposium
on Information, Computer and Communications Security (ASIACCS). ACM, Bejing, China.

YOUNAN, Y., POZZA, D., PIESSENS, F., AND JOOSEN, W. 2006. Extended protection against stack smashing
attacks without performance loss. In Proceedings of the Twenty-Second Annual Computer Security
Applications Conference (ACSAC ’06). Proceedings of the Twenty-Second Annual Computer Security
Applications Conference (ACSAC’06), 429–438.

Received January 2012; revised May 2012, September 2012; accepted January 2013

ACM Transactions on Information and System Security, Vol. 0, No. 0, Article 0, Publication date: 2012.

