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ABSTRACT
Buffer overflows are still a significant problem in programs
written in C and C++. In this paper we present a bounds
checker, called PAriCheck, that inserts dynamic runtime
checks to ensure that attackers are not able to abuse buffer
overflow vulnerabilities. The main approach is based on
checking pointer arithmetic rather than pointer dereferences
when performing bounds checks. The checks are performed
by assigning a unique label to each object and ensuring that
the label is associated with each memory location that the
object inhabits. Whenever pointer arithmetic occurs, the
label of the base location is compared to the label of the re-
sulting arithmetic. If the labels differ, an out-of-bounds cal-
culation has occurred. Benchmarks show that PAriCheck
has a very low performance overhead compared to simi-
lar bounds checkers. This paper demonstrates that using
bounds checkers for programs or parts of programs running
on high-security production systems is a realistic possibil-
ity.

Categories and Subject Descriptors
D.4.6 [Operating systems]: Security and Protection

General Terms
Security
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1. INTRODUCTION
Security has become an important concern for all com-

puter users. Worms and hackers are a part of every day
Internet life. A particularly dangerous type of vulnerabil-
ity is the buffer overflow. This type of vulnerability can be
used to perform a number of attacks. A first type of attack is
the code injection attack, where attackers are able to insert
code into the program’s address space and can subsequently
execute it. However, such a vulnerability can also lead to
non-control data attacks, where attackers overwrite data to
change the behavior of the program. Programs written in
C are particularly vulnerable to such attacks. Attackers can
use a range of vulnerabilities to inject code. The most well
known and most exploited buffer overflow is, of course, the
standard buffer overflow: attackers write past the bound-
aries of a stack-based buffer, overwrite the return address
of a function and make it point to their injected code (or
they could execute existing code). When the function sub-
sequently returns, the code injected by the attackers is ex-
ecuted [4]. While this type of vulnerability has existed for
a long time, it is still an active research topic with both at-
tackers [37] and defenders [2, 3] continually improving their
techniques, in terms of effectivity, efficiency and automation.

Buffer overflows also still occur often in real world pro-
grams: according to the NIST’s National Vulnerability Da-
tabase [31], 465 buffer overflow vulnerabilities were reported
in the first 10 months of 2008, making up 10% of the 4,668
vulnerabilities reported in that period. Of those buffer over-
flows vulnerabilities, 347 had a high severity rating. As a
result, buffer overflows make up 15% of the 2,324 vulnerabil-
ities with a high severity rating reported in those 10 months.

Many countermeasures exist to protect against these types
of problems [44, 20]. They range from safe languages [23, 32,
19, 27, 43] that remove the vulnerabilities entirely, to bounds
checkers [24, 36, 18, 2] that will perform runtime checks for
out-of-bounds accesses, to very lightweight countermeasures
that prevent certain memory locations from being overwrit-
ten [17, 13] or prevent attackers from finding or executing
injected code [40, 7, 6].

While these last techniques are efficient and useful against
many attacks, they often suffer from significant drawbacks.



Many of these countermeasures rely on memory locations re-
maining secret, which is not always the case. Other counter-
measures prevent execution of injected code, but attackers
may still achieve their objective by simply calling existing
code in unintended ways. As a result, attackers have found
several ways of bypassing these approaches.

Bounds checkers on the other hand prevent the entire class
of buffer overflow vulnerabilities by ensuring that the appli-
cation cannot write outside the bounds of objects. However,
the deployment of bounds checkers has not been forthcom-
ing because, while they can offer a high level of assurance,
they suffer from other drawbacks. Most bounds checkers
have a significant amount of performance overhead related
to the checks that they insert. Others require significant ar-
chitectural changes that require a specific memory allocation
scheme to be used. Yet others rely on static analysis tech-
niques to speed up performance, sometimes at the expense
of compatibility and scalability.

This paper presents PAriCheck (Pointer Arithmetic Check-
er), a new approach for protecting C applications against the
exploitation of buffer overflow vulnerabilities by performing
efficient dynamic bounds checks without requiring large in-
frastructural changes (like replacing the memory allocator).
To perform our bounds checks, we start from a well-known
bounds checking approach developed by Jones and Kelly
[24], our primary contribution is the development of a more
efficient alternative to the problem of pointer arithmetic
checking rather than using the splay-tree based approach
used by Jones and Kelly. To achieve compatibility with ex-
isting code, the pointer representation is left unchanged and
to achieve more efficient lookups no bounds information for
objects 1 is stored. Instead we store a unique ID, called a
label, for every object and ensure that the label is associ-
ated with the entire memory area that is allocated for that
object. We then instrument pointer arithmetic to compare
the label of the memory location resulting from the arith-
metic with the label of the base object. If the labels differ,
an out-of-bounds calculation has occurred. According to the
C standard [25], this would result in undefined behavior if
the out-of-bounds calculation was larger than 1 element out-
of-bounds and as a result we could terminate the program.
However, as noted by CRED [36], a significant amount of
programs that are not vulnerable to buffer overflows will
perform out-of-bounds calculations that are larger than 1
element out-of-bounds. To provide support for these pro-
grams, we use a technique similar to the one described by
CRED [36]: where out-of-bounds calculations are recorded
and if subsequent calculation goes in bounds again the in-
tended value is calculated. As a result, PAriCheck is also
compatible with these programs.

The rest of this paper is structured as follows: Section 2
briefly recaps buffer overflows and how attackers can abuse
this type of vulnerabilities. Section 3 discusses the design
of our countermeasure, while Section 4 examines the de-
tails of our prototype implementation. Section 5 presents
an evaluation of our prototype by benchmarking it both in
terms of performance and memory overhead. This section
also discusses the security impact of our countermeasure. In
Section 6 we compare our bounds checker to other counter-
measures. Finally, Section 7 presents our conclusion.

1We will use the term object to refer to an array, structure
or union allocated on the stack or in global memory, or any
area of memory that has been dynamically allocated.

2. BUFFER OVERFLOWS
Buffer overflows are the result of an out-of-bounds write

operation on an array. In this section we briefly recap how
an attacker could exploit such a buffer overflow. A detailed
overview of how a buffer overflow can be exploited, can be
found in [4].

Buffers can be allocated on the stack, the heap or in the
data/bss section in C. For arrays that are declared in a func-
tion body, space is reserved on the stack. Buffers that are
allocated dynamically (using the malloc function, or some
other variant), are put on the heap, while arrays that are
global or static are allocated in the data/bss section. The
array is manipulated by means of a pointer to the first byte.
Bytes within the buffer can be addressed by adding the de-
sired index to this base pointer.

Listing 1: A C function that is vulnerable to a buffer
overflow.

void copy (char∗ src , char∗ dst ) {
int i = 0 ;
char curr = s r c [ 0 ] ;
while ( curr ) {

dst [ i ] = curr ;
i ++;

curr = s r c [ i ] ;
}

}

At run-time, no information about the array size is avail-
able. Consequently, most C-compilers will generate code
that will allow a program to copy data beyond the end of
an array. This behavior can be used to overwrite interesting
data in the adjacent memory space.

On the stack this is usually the case: it stores the ad-
dresses to resume execution at, after a function call has
completed its execution. This address is called the return
address. Manipulating the return address might give the
attacker the possibility to execute arbitrary code. In addi-
tion to the return address, the contents of other variables on
the stack might also be overwritten. This could be used to
manipulate the results of previous calculations or checks.

Likewise, the heap also often contains important memory
management information right before the allocated buffer.
By manipulating this information, an attacker can control
the execution path of the processor when the application
frees the allocated memory.

Listing 1 shows a straightforward string copy function.
Improper use of this function can lead to a buffer overflow,
because there is no validation that the destination buffer
can actually hold the input string. This function will be
used throughout the paper as a running example to explain
the workings of the proposed algorithm.

Many current countermeasures try to protect applications
by protecting the return addresses and other important man-
agement information. However, this isn’t enough to thwart
buffer overflow attacks. The following subsections show how
someone might be able to successfully attack an application,
without overwriting the return address. These attacks will
also be protected against by PAriCheck.



2.1 Non-control Data Attacks
An example of how an attacker can modify the execution

flow, without overwriting important management informa-
tion, comes from a real bug present in old versions of the
UNIX login program. Listing 2 shows a simplified version of
the algorithm used to authenticate a user.

Listing 2: A simplified version of the UNIX login
function.
int l o g i n ( ) {

char username [ 8 ] ;
char hash pw [ 8 ] ;
char pw [ 8 ] ;
p r i n t f ( ” l o g i n : ” ) ;
g e t s ( username ) ;
// Put s t o r e d hash
// in hashed pw
lookup ( username , hash pw ) ;
p r i n t f ( ”password : ” ) ;
g e t s (pw ) ;
i f ( eq ( hash pw , hash (pw) ) )

return OK;
else

return INVALID LOGIN ;
}

Since it is impossible to specify the maximum number of
characters that should be read from the input, using the gets
function, the attacker might trigger a buffer overflow. By en-
tering a password that is longer than eight characters, the
array that stores the hash of the password can be overwrit-
ten. Hence, if the attacker enters an eight-character pass-
word, and appends this password with its eight-character
hash value, the original hash value will be overwritten with
the value supplied by the attacker. This will cause the login
application to authenticate the attacker.

Attacks like this do not inject code, but they can be used
to modify the behavior of an application to the benefit of an
attacker. Even though the example presented here occurred
decades ago, the problem is still relevant today (see [12]).
Furthermore, state of the art countermeasures often do not
detect this type of buffer overflows.

2.2 Attacker-controlled Offsets
Changing the execution flow of an application can some-

times be accomplished without executing an overflow of con-
tiguous memory. Listing 3 shows an example of a function
that contains such a flaw. In this example, the attacker con-
trols the data of the three parameters. However, unlike in
previous examples, no contiguous buffer overflow is used to
take over the application.

Listing 3: A function that is vulnerable to an arbi-
trary code injection attack

void (∗ log msg ) ( char ∗msg)
= p r i n t f ;

void change and log ( int ∗ buf f e r ,
int o f f s e t , int value ) {

b u f f e r [ o f f s e t ] = value ;
log msg ( ”Buf f e r has changed ” ) ;

}

The function in listing 3 modifies the contents of a buffer,
and sends a message to the log. Logging is done by calling a
function pointer to a function that logs the message. In this
example, the log is written to the console (using the printf
function).

By adjusting the values of the offset parameter, the at-
tacker is able to overwrite the log msg function pointer. If
the location of buffer is known, and the location of the
log message pointer is also known, the offset can be cal-
culated as the difference between buffer and log message.
Then, the attacker-controlled value is written to this loca-
tion. After this assignment, the log message function pointer
is called, which transfers control to whatever address the
attacker wrote in it in the previous step. This could for
instance be an address in buffer that contains malicious ma-
chine code.

2.3 Integer Errors
Integer errors [10] are not exploitable vulnerabilities by

themselves, but exploitation of these errors could lead to a
situation where the program becomes vulnerable to a buffer
overflow. Two kinds of integer errors that can lead to ex-
ploitable vulnerabilities exist: integer overflows and integer
signedness errors. An integer overflow occurs when an in-
teger grows larger than the value that it can hold. The
ISO C99 standard [25] mandates that unsigned integers that
overflow must have a modulo of MAXINT+1 performed on
them and the new value must be stored. This can cause
a program that does not expect this to fail or become vul-
nerable: if used in conjunction with memory allocation, too
little memory might be allocated causing a possible heap-
based buffer overflow.

Integer signedness errors occur as follows: when the pro-
grammer defines an integer, it is assumed to be a signed
integer, unless explicitly declared unsigned. When the pro-
grammer later passes this integer as an argument to a func-
tion expecting an unsigned value, an implicit cast will oc-
cur. This can lead to a situation where a negative argument
passes a maximum size test but is used as a large unsigned
value afterwards, possibly causing a stack-based or heap-
based overflow if used in conjunction with a copy operation
(e.g. memcpy expects an unsigned integer as size argument
and when passed a negative signed integer, it will assume
this is a large unsigned value).

3. COUNTERMEASURE DESIGN
In this section we describe the general approach taken by

PAriCheck.

3.1 Approach
The vulnerabilities described in Section 2 are the result

of out-of-bounds operations on arrays or via pointers. One
approach to protecting against this type of attack is to per-
form bounds checking: ensuring that no access is allowed
out-of-bounds of the memory area that an object inhabits.
However, bounds checking in C is a hard problem, due to
the pointer manipulation that is freely allowed in C and
the lack of bounds information that is available at runtime.
Most bounds checkers will protect against attacks on those
vulnerabilities by ensuring that a pointer does not go out-of-
bounds by storing extra information with the pointer. The
bounds checker will then check if the pointer is pointing to
the object that it is supposed to be pointing to when it is



dereferenced. PAriCheck is based on the observation in [24]
that pointers go out-of-bounds as the result of an arithmetic
operation. As a result, the main principle behind our coun-
termeasure is that we only perform out-of-bounds checks on
the results of pointer arithmetic. If we ensure that pointers
that go out-of-bounds via arithmetic are made invalid, then
an out-of-bounds access via these pointers is not possible.

Our countermeasure will not change the way that point-
ers are represented, so that we stay compatible with exist-
ing non-protected code. Unlike other countermeasures, we
also do not store bounds information for objects or pointers.
This is the main efficiency improvement made by our coun-
termeasure: by not storing bounds information for objects,
we do not need complex checks to find out which object a
pointer is pointing into, which results in more lightweight
lookups and checks.

Instead, we store a unique number for the memory area
(called a label) that an object inhabits. When the program
performs pointer arithmetic, we look up the label of the
memory location that we start the operation with and then
look up the label of the resulting pointer that results from
the arithmetic operation. If the labels match, the pointer is
still pointing within the bounds of the object; if they differ,
then we have an out of bounds calculation. If we were to use
size information the lookup would be more complex, instead
of comparing two labels we would have to look up the size
information of the memory area that the current pointer is
pointing into and then make sure that the arithmetic being
performed does not go beyond these bounds. While the last
check is fairly cheap, data structures for storing and looking
up boundaries of allocated objects are more expensive in
terms of computation as well as storage

These labels will take up a particular amount of memory.
To be able to use a single label for more than one byte of
memory, we make sure that all objects are a multiple of 2k

bytes and we also ensure that the object’s base address is
aligned to 2k. We call such a memory area of 2k bytes a
region. An object can inhabit multiple regions and we will
need the same label for each region. The region’s size is fixed
per application and the optimal size will depend on the ap-
plication’s memory use. We dicuss this further in Section 4.
When an object is allocated (by entering a function, when
the program starts for global/static memory or by explicit
dynamic allocation), we assign a label to the regions that
the object inhabits. When the object is later deallocated,
we do not remove the label as a new label will be assigned
when the object’s previous regions are reused. If an object
inhabits multiple regions, then it will be assigned the same
label multiple times. Since all regions that an object inhab-
its contain the same label, any copy to any location within
the object will be considered in-bounds. Since the label is
associated with the memory region, a pointer can point to
any location within the object: the bounds check will be
performed correctly by looking up the label associated with
the memory location that the pointer is pointing to.

Listing 4: A C function that calls the copy function
from Listing 1
int main ( ) {
char s r c1 [ 8 ] , dst1 [ 1 0 0 ] ;
char s r c2 [ 1 0 0 ] , dst2 [ 8 ] ;
// i n i t a l l s t r i n g s wi th a
// n u l l−terminated s t r i n g

// o f t h e i r maximum s i z e
copy ( src1 , dst1 ) ;
copy ( src2 , dst2 ) ;
}

Listing 4 contains a small program that calls the vulner-
able copy function described in Listing 1. Figure 1 has
a graphical representation of what the program looks like
when k is set to 5 (i.e., each region is 32 bytes large). The
full lines represent the memory area that was originally re-
quested for the object, while the dotted lines represent the
regions that the object’s inhabits.

Listing 5: Transformed copy and main functions
from Listings 1 and 4
int main ( ) {
char s r c1 [ 3 2 ] , dst1 [ 1 2 8 ] ;
char s r c2 [ 1 2 8 ] , dst2 [ 3 2 ] ;
l a b e l s s p a c e (&src1 , s izeof ( s r c1 ) , 1 ) ;
l a b e l s s p a c e (&dst1 , s izeof ( dst1 ) , 2 ) ;
l a b e l s s p a c e (&src2 , s izeof ( s r c2 ) , 3 ) ;
l a b e l s s p a c e (&dst2 , s izeof ( dst2 ) , 4 ) ;
// i n i t a l l s t r i n g s wi th a
// n u l l−terminated s t r i n g
// o f t h e i r maximum s i z e
copy ( src1 , dst1 ) ;
copy ( src2 , dst2 ) ;
}

void copy (char ∗ src , char ∗dst ) {
int i = 0 ; char curr ;
char ∗ ds t i , ∗ s r c i ;
short int l abe l 1 , l a b e l 2 ;
curr = ∗ s r c ;
while ( curr ) {

l a b e l 1 = g e t l a b e l ( dst ) ;
l a b e l 2 = g e t l a b e l ( dst+i ) ;
i f ( l a b e l 1 == l a b e l 2 ) {

d s t i = dst+i ;
∗ d s t i = curr

}
i ++;
l a b e l 1 = g e t l a b e l ( s r c ) ;
l a b e l 2 = g e t l a b e l ( s r c+i ) ;
i f ( l a b e l 1 == l a b e l 2 ) {

s r c i = s r c+i ;
curr = ∗ s r c i ;

}
}

Listing 5 contains an example of how our basic pointer
arithmetic checks are performed (Section 4 contains a com-
plete transformation of the copy function) on the program 4.
In the loop in copy, we lookup the label of the memory that
dst is pointing to and then compare it to the label of the
memory location that dst+i would point to. Similar checks
are done for src.

When main calls copy(src1,dst1), the loop will stop at
src+7. Because src is null-terminated all label checks will be
correct. In the case of copy(src2,dst2), the label of dst2+32
will be different from the label of dst2. This means we have
tried to access an out-of-bounds memory location. The next
section describes how we handle these situations.



Label1
Label2

src1

dst1

Label2
Label2

dst2

src2Label3
Label4
Label4
Label4
Label4

...

Label2

Figure 1: Memory layout of main in PAriCheck

3.2 Handling out-of-bounds pointers
When we detect an out-of-bounds access we use a tech-

nique similar to the ones used in [36]. We make the pointer
point to an invalid memory location: on 32-bit versions of
Linux, all memory above 3GB is considered kernel space.
Accessing this memory from a regular program will cause
the program to crash. So we set the pointer to point to a
unique value above 3GB which we will call an OOB-pointer.
We then allocate a block of memory (called the OOB-object)
where we store the label of the base pointer, the result-
ing memory location that would have been the result of
our arithmetic (which we call the intended pointer) and the
OOB-pointer value. When the program performs an arith-
metic operation using an OOB-pointer, we look up the cor-
rect OOB-object and then use the intended pointer as the
value to perform the arithmetic operation on. Then we per-
form a bounds check again by comparing the stored label
with the label of the result of the arithmetic operation. If
the object goes inbounds again, then we set the pointer to
the result of the operation, otherwise we create a new OOB-
object which contains the updated information and set the
pointer to the new OOB-pointer.

As a result, if the pointer is never accessed while out-of-
bounds, the program continues to function correctly.

3.3 Uninitialized pointers
Uninitialized pointers are handled by initializing all unini-

tialized pointers to 0. Location 0 is assigned a unique label
(label 1). Because a unique label is assigned to this memory
location, any arithmetic performed on these pointers larger
than the minimum object size will be detected as an out-
of-bounds access. However for this to work, we must ensure
that this memory location is never used: in Linux this can be
done simply by ensure that /proc/sys/vm/ mmap min addr
is not 0 (the default value for kernel 2.6.24 is 65536). In oper-
ating systems where mapping page 0 is legitimate behavior,
this can be achieved by ensuring that the countermeasure
maps this page without any permissions: any access to this
page will result in a segmentation violation.

3.4 Casting a pointer to an integer and back
again

PAriCheck will protect against out-of-bounds violations
caused by invalid pointer arithmetic and invalid array index
accesses. These are the most common types of bounds viola-
tions that occur in a program. However PAriCheck will not
protect programs that cast a pointer to an integer, then per-
form the calculation and later cast the resulting value back
to a pointer. This is a limitation in our approach, which is
also present in most other bounds checkers [38, 5, 24, 36, 18,
3], that stems from the fact that the arithmetic is no longer
performed on a real pointer and as such will not be detected.
While this is a limitation in our approach, the vast major-
ity of buffer overflows occur as the result of invalid pointer
arithmetic (e.g. an out-of-bounds strcpy) or invalid array
index accesses.

3.5 Overflows in structures
A limitation in our approach, one that is also present in

most other bounds checkers, is the fact that we do not pro-
tect pointers in a structure from other information in that
structure. This limitation is a result of the C standard which
specifically allows code to access the entire memory of a
structure from a pointer to an element in the structure (e.g.
to allow for instructions like memset(&strct,0,sizeof(strct));).
This makes it impossible to check for these kinds of buffer
overflows while remaining compatible with the C standard.

3.6 Bounds checking arrays
In C there is a difference between array types and pointer

types. If an array is declared as array[size], then the use of
array[index] means we are accessing an array via its index.
While the array type can be used interchangeably with a
pointer type in C, the two are handled differently by the
compiler. Array types have a size associated with them dur-
ing compilation, which means we can look up the array’s
size when accessing an array type via an index. As a result,
bounds checking array types is a trivial operation: we can
simply insert a check to make sure that the index used to
access an element in the array is smaller than the size of



the array. This type of check is trivial and does not occur a
significant amount of overhead and this is also the approach
used for checking arrays in our countermeasure. If a pointer
is used to access elements of the array, then our regular ap-
proach for dealing with pointers that is discussed in 3.1 is
used.

Variable length arrays are translated into calls to alloca
by the framework we use to implement our transformation,
which means that pointer arithmetic will be performed and
thus will be checked. However if they were handled as real
variable length arrays, our checker would just add the vari-
able denoting the size in the check instead of the compile-
time size.

3.7 Unprotected code
Code that is linked to code that is protected by PAriCheck

will work without issues. Any objects allocated in this code
will of course not have been labeled and will thus not enjoy
protection. Given that these objects have not been labeled,
that also means they do not have to be aligned. When a label
lookup is performed for these objects the label will simply
be 0 as will the result of the arithmetic, unless the result
of the arithmetic points into a protected object. If, when
running protected code, an unprotected object overflows into
a protected object, the resulting out-of-bounds access will
also be detected because the label of the unprotected object
(label 0) will differ from the label of the protected object.

4. PROTOTYPE IMPLEMENTATION
Our implementation has many facets. The most impor-

tant code transformations that result in the actual checks
being inserted whenever pointer arithmetic is performed,
were done using CIL [33]. Ensuring that all stack-based
objects are our minimum size and allocated on our align-
ment boundary, can be done by encapsulating them inside
a struct. However, for expedience, our prototype does some
changes to GCC to allow this. Finally we modified the mal-
loc, realloc and calloc functions to ensure that objects are
aligned correctly, are a multiple of our minimum size, and
are assigned a label.

We place the labels in a sequential area of memory that
is big enough to hold labels for all the regions.2 In our
prototype implementation, labels are 2 bytes large. This
is a trade-off: an application which creates more than 216

objects will create labels which are no longer unique and thus
may allow an out-of -ounds object to point to an object with
the same label. The implementation can easily be adapted
to use long instead of short integers, allowing the program to
create 232 objects. This would, however, double the amount
of memory that the labels take up in memory.

Because a label for every byte would waste too much mem-
ory, we have a default region size of 32 bytes. However, the
region size can be chosen depending on the application. Our
default region size ensures that we only need 1 label per 32
bytes. This means that the labels will take up only 6% of
memory per object, while a label for every byte would have
unacceptable overhead. It also means that every object will
take up 32 bytes. For example programs with 16 byte re-
gions will have a 12% label overhead, but if most objects

2This area of memory is virtual memory, which means that
only pages where we actually store a label will use physical
memory.

are close to 16 bytes in size and we would have an internal
fragmentation of 100% if we used a region size of 32 bytes.
So for a program with many smaller or larger chunks it be-
comes more interesting to set the region size closer to the
size of the most used objects (if this is known by the person
compiling the application).

To find the correct entry of a memory location in the label
area, we shift the address right by log2(regionsize) bits (i.e.,
by 5 bits for our default region size of 32 bytes), and then use
the resulting value as an offset into the table. This allows
for fast lookups of labels.

Listing 6 is a sample of the automatic transformation3

of the code in Listing 1. This transformation demonstrates
how our bounds checker performs its checks:

Listing 6: Transformed sample program
void copy (char ∗ src , char ∗dst ) {

int i = 0 ; char curr ;
char ∗mem5; char ∗mem6; char ∗mem7;
char ∗ d s t i ; char ∗ s r c i ;
short int l a b e l 1 ; short int l a b e l 2 ;
char ∗ oobdst ; char ∗ oobsrc ;

mem5 = s r c + 0 ;
curr = ∗mem5;
while ( curr ) {

i f ( dst < 3221225472) {
d s t i = dst + i ;
l a b e l 1 = g e t l a b e l ( dst ) ;

} else {
oobdst = getoob ( dst ) ;
l a b e l 1 = ge toob l abe l ( dst ) ;
d s t i = oobdst + i ;

}
l a b e l 2 = g e t l a b e l ( d s t i ) ;
i f ( l a b e l 1 != l a b e l 2 )

d s t i = setoob ( l abe l1 , d s t i ) ;
mem6 = d s t i ;
∗mem6 = curr ;
i ++;
i f ( s r c < 3221225472) {

s r co = s r c + i ;
l a b e l 1 = g e t l a b e l ( s r c ) ;

} else {
oobsrc = getoob ( s r c ) ;
l a b e l 1 = ge toob l abe l ( s r c ) ;
s r c i = oobsrc + i ;

}
l a b e l 2 = g e t l a b e l ( s r c i ) ;
i f ( l a b e l 1 != l a b e l 2 )

s r c i = setoob ( l abe l1 , s r c i ) ;
mem7 = s r c i ;
cur r = ∗mem7;

}
}

The pointer arithmetic has been transformed as follows:
our countermeasure checks if dst ’s address is below 3GB. If
it is, the label for dst is looked up and the arithmetic dst +
i is performed. Then the label for the buffer is looked up. If

3Some minor editiorial changes were made: variable names
have been changed to make the code more readable, some
excessive curly brackets were removed, etc.



dst is above 3GB, then it went out-of-bounds earlier and we
must look up the out-of-bounds value and look up the origi-
nal label. We then perform the arithmetic out of bounds dst
+ i. The resulting arithmetic and labels of either part of the
if statement will be stored in dsti and label1, respectively.
We then look up the label of this newly calculated address
and compare it to the label in label1. If the labels match,
the arithmetic was in bounds, if they do not, the arithmetic
went out-of-bounds and we assign an out-of-bounds value to
dsti, which will contain a unique ID (3GB + unique num-
ber), the labeling information and the original arithmetic.
Afterwards, dsti is used as the result of our arithmetic in
the operation we must perform. If the arithmetic would go
out-of-bounds in this case then the *mem 6 = curr state-
ment will try to dereference an invalid memory location,
causing the program to crash. Similar checks are performed
for src.

5. EVALUATION
Performing extra checks comes at a cost: both in terms of

performance and in terms of memory overhead. To evaluate
how high the performance overhead of our bounds checker
is, several benchmarks were run. All benchmarks were per-
formed on a single machine: an Intel Core 2 Duo 3.16 Ghz
with 8GB of RAM running Ubuntu 08.04 with kernel 2.6.24-
24-server. All benchmarks were compiled with using gcc-
4.3.0-20070803 with the O2 parameter and were linked to
dlmalloc 2.7.2 (the original one for the baseline benchmark
and our modified version for our bounds checker)4. The use
of the O2 parameter means that standard performance op-
timizations are applied to both the countermeasure and the
rest of programs.

We performed two sets of benchmarks: the SPEC CPU2000
integer benchmarks and the Olden benchmarks. The SPEC
CPU2000 integer benchmarks provide us with a measure-
ment of very CPU intensive programs, while the Olden bench-
marks allow us to measure applications that are very mem-
ory intensive. The SPEC CPU2000 benchmarks were run,
as is, with the default parameters which allowed for a re-
portable run. For the Olden benchmarks, a number of op-
tions were chosen that would let the program run for a sig-
nificant amount of time and would let it use a significant
amount of memory. The first column of Table 1 contains
the program names and, for the Olden benchmarks, the pa-
rameters that we used to achieve these results. For editing
purposes we abbreviated the amounts: in the table a K is
used to denote 1000 and M is used to denote 1000000. As
mentioned in Section 4, we use a default object alignment
and object size of 32 bytes for our countermeasure.

To perform our transformations we use the dosimpleMem
option of the CIL infrastructure. This option will simplify
all memory operations and makes our transformation eas-
ier. We then apply our bounds checker. However using
this option has a slight impact on performance. Since we
want to measure the overhead of only our transformations
rather than other transformations we supply benchmarks for
programs compiled regularly with GCC, compiled with CIL
with dosimpleMem and finally compiled with CIL with our
bounds checker.

4This memory allocator was chosen because it is easy to
modify and because it is used as the basis for the default
memory allocator in Linux.

In Section 5.1 we discuss our performance overhead, while
section 5.2 discusses the memory overhead associated with
PAriCheck.

5.1 Performance overhead
Table 1 contains the performance measurements for our

countermeasure for both the SPEC CPU2000 integer bench-
marks and the Olden benchmarks. Columns 2 to 5 in Table
1 contain the runtime in seconds of our benchmarks. Col-
umn 2 is simply the original program compiled with the
default gcc-4.3.0-20070803. While the third column is the
benchmark run with CIL with the option dosimplemem and
the default memory allocator. As can be seen, in most cases
the performance difference between CIL and GCC is neg-
ligible. Column 4 is essentially the same benchmark as in
Column 3, except CIL was linked with a memory allocator
which has 32 bytes as a minimum chunk size. By providing
both measurements we can show the impact of using our
modified memory allocator and the impact of the checks we
added. Column 5 contains the runtime of the benchmark
compiled with our extra checks. Since we aim at measuring
the overhead of our transformation rather than the impact of
various CIL transformations, we compare the CIL columns
with PAriCheck. Column 6 contains the relative overhead
of Column 3 over Column 5, i.e. the sixth column in Ta-
ble 1 is the relative performance overhead of the runtime of
PAriCheck compared to the original program compiled with
CIL and the default memory allocator. Column seven con-
tains the same as column 6, but over Columns 4 and 5, i.e.
PariCheck compared to the original program compiled with
CIL and the memory allocator with 32-byte size.

There are some surprising results, when running these
benchmarks: aligning tsp to 32-bytes improves its perfor-
mance significantly. This is an important reason for provid-
ing measurements of CIL with a memory allocator with the
default alignment (8 bytes) and the 32-byte alignment used
in our countermeasure. By providing both measurements we
can clearly assess the impact of our transformation even if
we would use a modified memory allocator in normal cases.
Another significant difference is in the memory overhead for
applications which use many small chunks, like twolf, where
the relative memory overhead because of the new chunk size
is significant.

The average overhead of our countermeasure is 49% for
the SPEC CPU2000 integer benchmarks and 4.5% (equal
alignment) to 8% (when using default alignment) for the
Olden benchmarks. This makes our approach the fastest
way of performing bounds checks on C applications. The
closest other approach, baggy bounds checking [3] has an
overhead of 60% on the SPEC CPU2000 benchmarks and
5.5% on the Olden benchmarks, where some of the speed
improvement relies on using a faster memory allocator.

However, some overheads, like the overhead of vpr, are
relatively high, although better (or comparable in the case
of baggy bounds checking) than existing bounds checkers
that do not rely on static analysis for optimizations. The
main reason for the high overheads of vpr is the use of out-
of-bounds pointers in many calculations, which means we
have to store and look up out bounds pointers.

For a production-level implementation of our approach,
these overheads can be further improved upon by perform-
ing compile-time optimizations on our checks: removing re-
dundant checks (e.g. if an arithmetic operation like src[i]



Table 1: Performance benchmarks: runtime in seconds
SPEC CPU2000 Integer benchmarks

Program GCC CIL CIL32 PAC CIL/PAC CIL32/PAC
gzip 89 90,3 90,3 195 115,95% 115,95%
vpr 68,3 68,2 68 230 237,24% 238,24%
mcf 37,9 37,1 37,8 48,1 29,65% 27,25%

crafty 46,1 48,5 48,5 65,5 35,05% 35,05%
parser 958 946 946 1030 8,88% 8,88%

gap 44,9 45,3 45,4 126 178,15% 177,53%
bzip2 70,6 70,7 70,7 173 144,7% 144,7%
twolf 101 104 108 237 127,88% 119,44%

Average 177 176,3 176,8 263,1 49,23% 48,81%

Olden Benchmarks
Program GCC CIL CIL32 PAC CIL/PAC CIL32/PAC

bh (410K,32) 76,1 76,9 78,2 80,2 4,29% 2,56%
bisort (16M,200M) 21,5 21,6 23 24,1 11,57% 4,78%

em3d (5K,3.5K,2K,100) 66 66 66 67,7 2,58% 2,58%
health (10,90,20) 12,5 12,5 19,6 21,4 71,2% 9,18%

mst (10K) 21,8 22,2 22 24,6 10,81% 11,82%
treedadd (26,1) 3,5 3,5 5,3 5,5 57,14% 3,77%

tsp (10M) 24,3 24,5 20,7 21,4 -12,65% 3,38%
voniroi (4M) 14,5 14,5 15,3 16,6 14,48% 8,5%

Average 30 30,2 31,3 32,7 8,28% 4,47%

has been checked and we can be sure that if neither i nor src
change then the following check can be removed), moving
checks outside of loops, etc. [11].

5.2 Memory overhead
Table 2 contains the memory usage in megabytes of the

programs compiled with CIL with the default memory al-
locator, compiled with CIL with the memory allocator that
aligns to 32-bytes and compiled with our bounds checker in
columns 2, 3 and 4 respectively. Because the memory over-
head of compiling with GCC and with CIL is the same, we
have omitted the GCC column. The fifth column shows the
memory overhead of using our countermeasure compared to
the memory allocator with default alignment and column 6
shows the overhead of our countermeasure when using a
memory allocator with the same alignment. These over-
heads were measured by adding a call to getchar() at the
end of the program and then examining the VmHWM entry
in /proc/ < pid > /status. This entry contains the peak
resident set size which is the maximum amount of RAM the
program has used during its lifetime. Since our tests were
run with swap turned off this is equal to the actual maximum
memory usage used by our program.

These results give us an average overhead of 9.5% when
using the same type of memory allocator for SPEC CPU2000
benchmarks and 5.19% for the Olden benchmarks. The over-
head is about the same when using the default alignment for
the SPEC CPU2000 benchmarks, but is higher, 22% when
using the default alignment for the Olden benchmarks. This
is due to the fact that some applications in the Olden bench-
marks allocate many objects which have a smaller alignment
than our default alignment, resulting in a waste of mem-
ory, especially for the applications bisort, health and tsp. By
changing our default object size for these applications to the
same as the original memory allocator (8 bytes), the mem-

ory overhead drops by 20% for each application, while the
performance overheads also reduce to 9.7% and 28.8% in the
cases of bisort and health. In the case of tsp, where the over-
head was negative due to alignment, it did not improve, but
went up to 13%. This means that, from a memory point of
view, it is advantageous for a developer protecting his appli-
cation with PAriCheck to use region sizes close to the most
often used allocation unit.

6. RELATED WORK
Many countermeasures have been designed to protect against

code injection attacks. In Section 6.1 we compare our ap-
proach to other bounds checkers in detail. Then, in Sec-
tion 6.2, we briefly highlight the differences between our ap-
proach and other approaches that protect programs against
attacks on memory error vulnerabilities.

6.1 Bounds checkers
RTCC [38] is a modification of the Portable C Compiler

that adds run-time array subscript and pointer bounds check-
ing. To implement this, pointers are represented by three
times their normal size, containing the current value of the
pointer and the memory addresses of its lower and upper
bounds. However, by changing the pointer representation
code can no longer be linked to existing code and the com-
piler can no longer implicitly cast an integer to a pointer.

Safe C [5] is a bounds checking countermeasure for C. It
defines a kind of safe pointer that contains the following at-
tributes: value, pointer base, size, storage class (heap, local,
global) and capability (forever, never). The value attribute
is the actual pointer, the base and size attributes are used
for spatial check while the storage class and capability at-
tributes are used for temporal checks. As with RTCC the
pointer representation is changed, resulting in an incompat-
ibility with existing code.



Table 2: Memory benchmarks: memory usage in megabyte
SPEC CPU2000 Integer benchmarks

Program CIL CIL32 PAC CIL/PAC CIL32/PAC
gzip 180,8 180,8 192,2 6,31% 6,31%
vpr 20,7 20,9 22,5 8,7% 7,66%
mcf 77,4 77,4 101,4 31,01% 31,01%

crafty 2,5 2,5 3 20% 20%
parser 25,5 25,5 27,5 7,84% 7,84%

gap 193 193 205,8 6,63% 6,63%
bzip2 185,1 185,1 196,8 6,32% 6,32%
twolf 4 5,3 6,8 70% 28,3%

Average 86,1 86,3 94,5 9,76% 9,5%
Olden Benchmarks

Program CIL CIL32 PAC CIL/PAC CIL32/PAC
bh (410K,32) 70,5 81,4 86,4 22,55% 6,14%

bisort (16M,200M) 128,4 256,4 272,4 112,15% 6,24%
em3d (5K,3.5K,2K,100) 535,1 535,4 569,2 6,37% 6,31%

health (10,90,20) 587,6 987,6 1049 78,57% 6,25%
mst (10K) 1250 1250,5 1329 6,32% 6,25%

treedadd (26,1) 1024 1024,4 1088 6,25% 6,25%
tsp (10M) 640,5 1024,5 1089 69,95% 6,25%

voniroi (4M) 2051 2147 2204 7,44% 2,64%
Average 785,9 913,4 960,8 22,25% 5,19%

Jones and Kelly [24] developed a bounds checking tech-
nique that was used as the basis for the rest of the work
described in this section. This bounds checker does not
change the way pointers are represented in a program. This
allowed bounds checked programs to be linked with exist-
ing compiled code. This suffers from very high performance
overhead (up to 11x slower than the original program).

CRED [36] improves on the work described in [24] by pro-
viding support for arrays going out-of-bounds. Our handling
of out-of-bounds pointers is based on the work developed
in this paper. They also further improve on the technique
by providing a few optimizations, one specific optimization
which increases speed is that only character pointers and
character arrays are checked. Checking this reduced set of
pointers improves performance, however this approach still
suffers from a high overhead (up to 11x when protecting all
arrays) or does not protect programs against overflows in-
volving non-character arrays or pointers (up to 2x when only
protecting strings). Our approach protects all array types
and all dynamically allocated memory at an overhead that
is faster than the overheads reported by CRED when only
protecting strings.

Dhurjati and Adve [18] discuss an efficient bounds checker
that has a significantly lower overhead than previous bounds
checkers but which is still twice as high compared to our
overhead. Their technique rests on the use of automatic pool
allocation for a memory allocation, while our approach does
not require such a significant change of allocator. To be able
to use the pool allocation, global static pointer analysis is
required, which introduces scalability and modularity issues.
They further improve on efficiency by applying compile-time
optimizations to improve their performance. These tech-
niques could also be applied to our bounds checker. We de-
cided to focus on demonstrating that a purely dynamic ap-
proach can be made more efficient without changing the un-

derlying architecture significantly or even applying compile-
time optimizations.

Clause et al. [14] developed a dynamic tainter that checks
for both spatial and temporal errors for dynamically allo-
cated memory. It works by assigning taint marks to objects
and assigning the same taint mark to pointers to these ob-
jects. The taint marks for pointers are then propagated and
transformed through the program whenever an operation
(such as arithmetic) on a pointer occurs. When the pointer
is dereferenced, the taint mark for the pointer is compared
to the taint mark of the object. If the taint marks differ then
a memory error has occurred. The approach discussed by
Clause at al. works on binaries rather than source code, but
requires hardware assistance to be able to efficiently check
and propagate the taint marks.

Baggy bounds checking [3] was developed concurrently to
and independently from our approach. It is similar in that
it pads objects to the next significant byte to achieve faster
bounds look ups. This approach is 10% slower than our
approach on the SPEC CPU2000 benchmarks, with compa-
rable results for the Olden benchmarks. A significant draw-
back of the approach is that half the address space cannot
be used because out of bounds pointers have their first bit
set, while in bounds pointers have their first bit clear. This
means that in 32-bit applications, only 2GB of memory can
be used, where as in our approach 3GB can be used because
Linux reserves 1GB for kernel memory. If this reserved area
were smaller, our approach would still work, we would sim-
ply need to map an area of virtual memory to which we could
point out-of-bounds pointers that would result in the pro-
gramming crash if dereferenced. For most applications, an
area of virtual memory of 16 pages (64 Kb) that are mapped
without permissions would suffice.

SoftBound [30] is a bounds checker, that stores the base
and bounds for each pointer in the program in a separate



memory location. Whenever a pointer is dereferenced, the
base and bounds are looked up to ensure that the pointer
is in bounds. As such, it does not need to check pointer
arithmetic, because out-of-bounds accesses will be detected
when the pointer is dereferenced. It has an average overhead
of 67% for the SPEC CPU2000 benchmarks, which is about
17% higher than our approach. However, it does have sup-
port for preventing overflows within structures if requested
via a command line parameter.

Fail-safe C [34] is a compiler that implements a memory
safe version of the ANSI C standard. It does this using a
number of techniques: fat pointers and integers (because
pointers can be cast to integers and back again) for bounds
checking, keeping track of runtime type information, garbage
collection to prevent dangling pointers, etc. The overhead of
this approach is, however, significant. The programs in the
ByteMARK benchmark were slowed down by two to four
times on average.

6.2 Alternative approaches
Many alternative approaches exist that try and protect

against buffer overflow attacks. In this section we will briefly
discuss the most important types of countermeasures. A
more extensive discussion can be found in [44, 20].

6.2.1 Safe languages
Safe languages are languages where it is generally not pos-

sible for any known code injection vulnerability to exist as
the language constructs prevent them from occurring. A
number of safe languages are available that will prevent these
kinds of implementation vulnerabilities entirely. There are
safe languages [23, 22, 32, 29, 19, 27] that remain as close to
C or C++ as possible, these are generally referred to as safe
dialects of C. While some safe languages [15, 43] try to stay
more compatible with existing C programs, use of these lan-
guages may not always be practical for existing applications.

6.2.2 Probabilistic countermeasures
Many countermeasures make use of randomness when pro-

tecting against attacks. Canary-based countermeasures [17,
21, 28, 35] use a secret random number that is stored before
an important memory location: if the random number has
changed after some operations have been performed, then an
attack has been detected. Memory-obfuscation countermea-
sures [16, 8] encrypt (usually with XOR) important mem-
ory locations or other information using random numbers.
Memory layout randomizers [40, 7, 42, 9] randomize the lay-
out of memory: by loading the stack and heap at random
addresses and by placing random gaps between objects. In-
struction set randomizers [6, 26] encrypt the instructions
while in memory and will decrypt them before execution.

While these approaches are often efficient, they rely on
keeping memory locations secret. However, programs that
contain buffer overflows could also contain“buffer overreads”
(e.g. a string which is copied via strncpy but not explicitly
null-terminated could leak information) or other vulnerabil-
ities like format string vulnerabilities, which allow attackers
to print out memory locations. Such memory leaking vul-
nerabilities could allow attackers to bypass this type of coun-
termeasure. Another drawback of these countermeasures is

that, while they can be effective against remote attackers,
they are easier to bypass locally, because attackers could at-
tempt brute force attacks on the secrets[39].

6.2.3 Separation and replication of information
Countermeasures that rely on separation or replication of

information will try to replicate valuable control-flow infor-
mation [41, 13] or will separate this information from reg-
ular data [45, 46]. This makes it harder for an attacker to
overwrite this information using an overflow. Some counter-
measures will simply copy the return address from the stack
to a separate stack and will compare it to or replace the re-
turn addresses on the regular stack before returning from a
function. These countermeasures are easily bypassed using
indirect pointer overwriting where an attacker overwrites a
different memory location instead of the return address by
using a pointer on the stack. More advanced techniques try
to separate all control-flow data (like return addresses and
pointers) from regular data, making it harder for an attacker
to use an overflow to overwrite this type of data [46].

While these techniques can efficiently protect against buff-
er overflows that try to overwrite control-flow information,
they do not protect against attacks where an attacker con-
trols an integer that is used as an offset from a pointer, nor
do they protect against non-control-data attacks.

6.2.4 Runtime enforcement of static analysis results
In this section we describe two countermeasures that pro-

vide runtime enforcement of results of static analysis.
Control-flow integrity [1] determines a program’s control

flow graph beforehand and ensures that the program ad-
heres to it. It does this by assigning a unique ID to each
possible control flow destination of a control flow transfer.
Before transferring control flow to such a destination, the
ID of the destination is compared to the expected ID, and
if they are equal, the program proceeds as normal. This ap-
proach, while strong and in the same efficiency range as our
approach, does not protect against non-control data attacks.

WIT [2] discusses a very efficient technique to check wheth-
er instructions write to valid memory location. Their tech-
nique is based on static analysis that does a points-to anal-
ysis of the application. This analysis is then used to assign
colors to memory locations and instructions. Each instruc-
tion has the same color as the objects it writes to. Then
runtime checks are added to ensure that these colors are the
same. This prevents instructions from writing to memory
that they cannot normally write to. This technique depends
on a static points-to analysis, which can result in false neg-
atives where an instruction is determined to be safe when it
is not or it can assign an instruction or object a color that
allows an unsafe instruction access to the object. While our
technique is similar in that we check labels (i.e. colors),
ours is purely dynamic which means we always have full in-
formation on the memory that an object inhabits and can
assign labels correctly, whereas static alias analysis could
confuse objects, allowing instructions access to multiple ob-
jects. The technique is also different in that it is applied to
instructions that write to memory, which will not prevent
out-of-bounds reads.



7. CONCLUSION
The countermeasure described in this paper is an efficient

dynamic bounds checker that can be used in high-security
production systems with little effort and without requiring
major architectural changes. PAriCheck protects against
buffer overflow attacks that aim to overwrite control data
or non-control data, by ensuring that the results of pointer
arithmetic always points within the bounds of the base ob-
ject. This is done by assigning a unique label for each ob-
ject and associating this label with the entire memory area
that the object inhabits. We then compare the label of the
base address of the arithmetic operation with the label of
the resulting arithmetic. If they differ, an overflow has oc-
curred. PAriCheck also retains full compatibility with ex-
isting C applications, even ones that do not comply with
the C standard and calculate out-of-bounds values. In our
benchmarks, PAriCheck has an average runtime overhead of
49% for the SPEC CPU2000 benchmarks, which is a very
low overhead for this type of countermeasure. If we further
combine our approach with static analysis techniques, in-
cluding loop optimization and preventing redundant checks,
performance overhead can be reduced even more.
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