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Abstract

In this paper we present an efficient countermeasure
against stack smashing attacks. Our countermeasure does
not rely on secret values (such as canaries) and protects
against attacks that are not addressed by state-of-the-art
countermeasures. Our technique splits the standard stack
into multiple stacks. The allocation of data types to one of
the stacks is based on the chances that a specific data ele-
ment is either a target of attacks and/or an attack vector. We
have implemented our solution in a C-compiler for Linux.
The evaluation shows that the overhead of using our coun-
termeasure is negligible.

1 Introduction

Buffer overflow vulnerabilities are a significant threat to
the security of a system. Most of the existing buffer over-
flow vulnerabilities are located on the stack, and the most
common way for attackers to exploit such a buffer overflow
is to use it to modify the return address of a function. By
making the return address point to code they injected into
the program’s memory as data, they can force the program
to execute any instructions with the privilege level of the
program being attacked [2].

According to the NIST’s National Vulnerability
Database [22], 584 buffer overflow vulnerabilities were re-
ported in 2005, making up 12% of the 4852 vulnerabilities
reported that year. In 2004 the amount of reported buffer
overflow vulnerabilities was 341 (14% of 2352). This
means that while the amount of reported vulnerabilities
has almost doubled in the past year buffer overflows still
remain an important source of attack. 418 of the 584 buffer
overflows reported last year had a high severity rating, this
makes up 21% of the 1923 vulnerabilities rated with a high
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severity level. They also make up 42% of the vulnerabilities
which allow an attacker to gain administrator access to a
system.

Stack-based buffer overflows have traditionally made up
the largest bulk of these buffer overflows, and are the ones
most easily exploited by attackers. Many countermeasures
have been devised that try to prevent code injection attacks
[33]. Several approaches attempt to solve the vulnerabil-
ities entirely [17, 4, 15, 23, 24, 32], however, they gener-
ally suffer from a substantial performance impact. Other
types of countermeasures have been developed with bet-
ter performance results that specifically target stack-based
buffer overflows. These countermeasures can be divided
into four categories. The first category [12, 13] offers pro-
tection by using a random value, which must be kept secret
from an attacker, if the program leaks this information (e.g.
through a ’buffer over-read’ or a format string vulnerability)
the protection can be bypassed entirely. A second category
[29, 10, 5, 31] copies the return address and the saved frame
pointer, and compares or replaces them when the function
returns. While this protects against the return address being
overwritten, it does not protect other information stored on
the stack (e.g. pointers) which could be used by an attacker
to execute arbitrary code. A third category tries to correct
the library functions that are typically the source of an over-
flow (e.g. strcpy) [5], however, this does not protect against
buffer overflows which could occur at a different place in
the program (e.g. an overflow caused by a loop). A fourth
category tries to make attacks harder by modifying the op-
erating system [26, 28, 6, 16, 7] or hardware [31, 20].

In this paper we present a new approach for protecting
against stack based buffer overflows by separating the stack
into multiple stacks. This separation is done according to
the type data stored on the stack. Each stack is protected
from writing into the other stack by a guard page'. Our
countermeasure offers equal or better performance results

'A guard page is page of memory where no permission to read or to
write has been set. Any access to such a page will cause the program to
terminate.



than the countermeasures in the categories discussed earlier
and does not suffer from some of their weaknesses: it does
not rely on random numbers and protects pointers as well as
the return address and frame pointer. In [34] we describe a
more global approach to separating control flow data from
regular data and in [35] we discuss applying it to the heap
to separate the metadata from the regular data.

The paper is structured as follows: section 2 briefly de-
scribes the technical details of the stack-based buffer over-
flow, some representative countermeasures and their weak-
nesses. Section 3 discusses the design and implementation
of our countermeasure. Section 4 evaluates our counter-
measure in terms of performance and security. In section
5 we discuss limitations and possible improvements for our
approach and describe ongoing work. Section 6 compares
our approach to existing countermeasures, while section 7
presents our conclusions.

2 Stack-based buffer overflows

Buffer overflows are the result of an out of bounds write
operation on an array. In this section we briefly recap how
an attacker could exploit such a buffer overflow on an array
that is allocated on the stack.

When an array is declared in C, space is reserved for
it and the array is manipulated by means of a pointer to
the first byte. At run-time no information about the array
size is available and most C-compilers will generate code
that will allow a program to copy data beyond the end of
an array, overwriting adjacent memory space. If interesting
information is stored somewhere in such adjacent memory
space, it could be possible for an attacker to overwrite it.
On the stack this is usually the case: it stores the addresses
to resume execution at after a function call has completed
its execution, i.e. the return address.

For example, on the IA32-architecture the stack grows
down (i.e. newer function call have their variables stored
at lower address than older ones). The stack is divided
into stackframes. Each stackframe contains information
about the current function: arguments to a function that was
called, registers whose values must be stored across func-
tion calls, local variables, the saved frame pointer and the
return address. An array allocated on the stack will usu-
ally be contained in the section of local variables of a stack-
frame. If a program copies data past the end of this array
it will overwrite anything else stored before it and thus will
overwrite other data stored on the stack, like the return ad-
dress.

Several countermeasures were designed against this at-
tack: ranging from bounds checkers to operating system
changes. Many of these are discussed in section 6. Here, we
discuss two of the mostly used countermeasures that protect
against this attack.
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Figure 1. Indirect pointer overwriting attack

StackGuard [12] was designed to be an efficient protec-
tion against this type of attack: it protects the return address
by placing a randomly generated value (called a canary) be-
tween the saved frame pointer and the local variables on the
stack. This canary would be generated at program start up
and would be stored in a global variable. When a function
is called, the countermeasure would put a copy of the ca-
nary onto the stack after the saved frame pointer. Before
the function returns, the canary stored on the stack will be
compared to the global variable, if they differ, the program
will be terminated. If an attacker would want to overwrite
the return address, he would have to know the canary, so he
could write past it. A significant problem with this approach
is the fact that the program can not leak the canary, if it did,
the attacker could just write the correct value back on the
stack and the protection would be bypassed.

Figure 1 depicts the stack layout of a program protected
with StackGuard and illustrates an attack called indirect
pointer overwriting [8]. This attack consists of exploiting
a local buffer to overwrite a pointer pl stored in the same
stackframe and to make the pointer refer to the return ad-
dress. When the pointer is later dereferenced for writing, it
will overwrite the return address rather than the value it was
originally pointing to. If attackers can control the value that
the program would write via the pointer, they can modify
the return address to point to their injected code.

ProPolice [13] attempts to protect against this type of at-
tack by reorganizing the local variables stored in each stack-



frame: all arrays are stored before all other local variables
in each stackframe. This prevents an attacker from using an
overflow to overwrite a pointer and using an indirect pointer
overwrite to bypass the protection.

However, as mentioned earlier, this type of protection
has some limitations: if a program leaks the canary (e.g.
through a format string vulnerability or a ’buffer over-
read’), the protection can be bypassed completely. Another
point of attack would be to use a buffer overflow to over-
write an array of pointers in a program or to use a structure
that contains a buffer but no pointers to overwrite another
structure that does contain such a pointer. It will also not
protect against memory that is allocated with the alloca®
call, if an overflow occurs in memory allocated using this
call, it could be used to perform an indirect pointer over-
write.

In the next section we discuss our approach which aims
to better protect against these type of attacks, while still pre-
serving or improving the performance of the previously de-
scribed countermeasures.

3 The multiple stacks countermeasure to
protect against buffer overflow vulnerabil-
ities

This section describes the approach of the multiple
stacks countermeasure by describing the basic concepts be-
hind its design, as well as how it was implemented.

3.1 Approach

The stack stores several kinds of data: some data is re-
lated to control flow, such as stored registers, but it also
stores regular data like the local variables of a function.
However, this regular type of data can sometimes also be
used by an attacker to inject code if it is modified (e.g.
pointers could allow indirect pointer overwriting). Other
data could be used to perform an attack if it is misused.

In this section we describe an approach which separates
the stack into multiple stacks based on two criteria: how
valuable data is to an attacker when it is a target for attack
and the risk of the data being used as an attack vector (i.e.
misused to perform an attack). These properties are not mu-
tually exclusive: some data could be both a target and a vec-
tor. So, we must evaluate all possible data types and place
them in categories according the risk of being an attack vec-
tor and the effective value.

We can assign data a ranking based on its risk of being an
attack vector and the value it has as a target. Data can have

2alloca is used to dynamically allocate space on the stack, it behaves in
much the same way as malloc call, except that the memory it allocates will
be released when the function returns.

Table 1. Attack vector versus attack target
categories

Vector/Target | Low | Medium | High
Low cat. 3 cat. 2 cat. 1
Medium cat. 5 cat. 3 cat. 2
High cat. 5 cat. 4 cat. 6

a low, medium, or high ranking for both properties (e.g. the
return address has high target value because attackers gen-
erally want to overwrite it, and a low vector value because it
can’t be attacked directly). Based on these rankings we can
divide the data into different categories. This is illustrated
in Table 1, where we use six categories.

In principle, one could always argue for other categories
or combinations. However, we decided on limiting these
categories to six based on how we perceive the combined
risk/value resulting from the combination of attack vector
risk and attack target value. We believe that the presented
set of six categories is a strong trade-off. Our main objective
is to show that a multiple stacks countermeasure (based on
several categories) can be supported efficiently.

Category one contains highly valuable data and there is
only a low risk of it being used as an attack vector. This
is the main category that we wish to protect from buffer
overflows.

Category two represents two cells from the summary ta-
ble: data which has a low risk of being an attack vector, but
a medium target value, and data which has a medium risk of
being a vector, but is also a high-value target. We consider
both these two types of data to have a comparable combined
risk/value.

Category three contains data which has a medium risk of
being a vector, but is also only a medium-value target. We
have supplemented it with data which has the least impor-
tance in our countermeasure: low on vector-risk and low on
target-value. Mainly, it does not matter where this type of
information is placed since it needs no protection and can’t
be used to attack. As such, we decided on placing it in a
middle category.

Category four contains data which has a high risk of be-
ing an attack vector, but which is also a medium-value tar-
get. So, there is some need for protection.

Category five contains data which has a high or medium
risk of being a vector, but has only low value as a target. It
contains both high and medium risk data, because the data
needs to be isolated from higher-value targets, but does not
need to be protected.

Category six is the hardest data to protect. It is both a
high-value target and has a high risk of being used as an
attack vector. We place it in a separate category because it



needs both extra protection and needs to be protected from.

We can now decide what information to put in each of
these categories by assigning them rankings of their target-
value and attack vector-risk.

The Return address is the most obvious target for attack:
if an attacker can modify it, he can easily execute in-
jected code. However, an attacker does not directly
control the return address, so it is an unlikely vector.

e Attack target: High; Attack vector: Low

Other saved registers on the stack, like the saved frame
pointer and the caller-save and callee-save registers
could be used to attack a program [19]. So, all these
are valuable targets, but generally an attacker can not
use them to mount an attack.

o Attack target: High; Attack vector: Low

Pointers can contain reference functions or data. If a func-
tion pointer is overwritten, an attacker can directly ex-
ecute inject code. If a data pointer is overwritten, an
attack could use indirect pointer overwriting, so these
are very likely targets for attacks. However, they can
not be used as an attack vector, unless they can modi-
fied by an attacker.

e Attack target: High; Attack vector: Low

Integers can sometimes be used to store pointers or in-
dexes to pointer operations, so they can be considered
attack targets. They are not attack vectors in the sense
that they could directly overwrite other information on
the stack.

e Attack target: Medium; Attack vector: Low

Floating types are not valuable targets because they will
not generally contain information that could lead to
code injection (either directly or indirectly). They are
also unlikely attack vectors because they can’t be used
directly to overwrite adjacent memory locations.

e Attack target: Low; Attack vector: Low

Arrays are assigned different target values and attack
vector-risks depending on their type:

Arrays of pointers are valuable targets, because they
contain pointers, and as such could be used to
perform an indirect pointer overwrite, if modi-
fied. However, there is also a chance that an op-
eration on an array of pointers could lead to writ-
ing outside the bounds of the array. Thus, there is
a risk of it being used as an attack vector as well.
However, these type of arrays are not generally

used with functions that are prone to buffer over-
flows (e.g. strcpy and related functions), so this
risk is not as high as with arrays of characters.

e Attack target: High; Attack vector: Medium

Arrays of characters are the traditional arrays that
are most vulnerable to buffer overflows. The risk
of them being used as an attack vector is high,
especially since they are also often used with un-
safe copying functions. They do not contain any
information that could indirectly or directly lead
to a code injection attack.

e Attack target: Low; Attack vector: High

Other arrays are possible targets because an integer
in an array of integers could be used to store a
pointer. As with arrays of pointers, they are pos-
sible vectors, since an out of bounds write could
occur, but they are not generally used with the
most dangerous functions.

e Attack target: Medium; Attack vector:

Medium

Arrays of structures and unions are discussed sepa-
rately.

Structures/unions are assigned different target values and
attack vector-risks depending on the type of the data
they contain:

Structures containing no arrays at any level (struc-
tures and unions can contain other structures or
unions) are unlikely attack vectors, but possible
targets because they possibly contain pointers.

e Attack target: Medium; Attack vector: Low

Structures containing arrays of characters are
likely vectors because a buffer overflow could
occur in the character array. They are also
possible targets because they could contain
pointers.

o Attack target: Medium; Attack vector: High

Structures containing other arrays are possible
vectors, because overflows could occur. They
are also a target because the structure or union
could be used to store a pointer.

e Attack target: Medium; Attack vector:

Medium

Arrays of structures/unions Arrays of structures are a
special case because the structures or unions stored in
such an array can contain arrays at some level.

Not containing arrays of characters If the struc-
tures or unions inside the array do not contain



arrays of characters at any level, we treat them
the same as other arrays: possible targets and
possible vectors.

e Attack target: Medium; Attack vector:

Medium

Containing arrays of characters As previously
mentioned for structures or unions containing
character arrays: they are a likely target, and a
possible vector.

e Attack target: Medium; Attack vector: High

Based on these assignments and Table 1, the different
categories will contain the following data:

Category 1 : return address, other saved registers, point-
ers.

Category 2 : arrays of pointers, structures and unions (no
arrays), integers.

Category 3 : floating types, other arrays, structures/unions
containing arrays but not arrays of characters at any
levels, arrays of structures that do not contain arrays of
characters at any level.

Category 4 : structures containing array of characters, ar-
rays of structures containing arrays of characters

Category 5 : arrays of characters

Category 6 would be the hardest to protect, thankfully
it is empty in our risk/value evaluation. There is no data
on the stack that we consider to have high risk of being an
attack vector but is also a high-value target.

As with the different categories, the actual value that we
have assigned specific data is based on the value or risk that
we perceive it to have. If some data would be assigned a dif-
ferent risk or value, resulting in it being placed in a different
category, this would only require minimal modification of
our existing countermeasure.

The main principle used to design this countermeasure
is to separate information in these different categories from
each other by storing them on separate stacks. As such they
can no longer be overwritten by information which has been
moved to a different stack. Figure 2 depicts the memory
layout if we were to map the five categories that contain
data onto five different stacks.

It is however fairly simple to modify our design (and our
implementation) to support other stack configurations de-
pending on the amount of risk that these data types or cate-
gories present (or if the risk of a particular category or data
type can be diminished or abolished entirely) in a particular
application versus the amount of memory that can be used.
An example of this would be to support only two stacks,
and to place categories one, two and three on the first stack,
while storing categories four and five on the second stack.

3.2 Implementation

The multiple stack countermeasure was implemented in
gcc-4.1-20050902 for Linux on the IA32 architecture. Each
such stack is stored sequentially after the other and each
stack is protected from the previous using a guard page. We
start of by allocating the different stacks at a fixed location
from one another. This fixed point is the maximum size that
the stack can grow to (this must be known at compile time).
As long as no information is written to the specific pages
that were allocated for the stack, the program will only use
virtual address space, rather than physical address space so
we can easily map all stacks into memory without wasting
any physical memory.

The countermeasure was implemented in the pass of the
compiler that converts the GIMPLE representation® into
RTL*.

We implement our countermeasure by modifying the
way local variables are accessed in a function. When a
function is called in a program, the return address will be
stored on the stack, however, to access local variables of
a function, the current value of the register containing the
stack pointer will be copied to the frame pointer register
(and the current saved frame pointer will be saved on the
stack). This frame pointer will be used as a fixed loca-
tion to access a function’s local variables (all variables will
be accessed as an offset to the frame pointer), this mecha-
nism is used because the value of the register containing the
stack pointer is constantly changing whenever a variable is
pushed or popped from the stack. The compiler will cal-
culate the offset to the frame pointer for local variables at
compile time and will use this offset whenever it accesses
this variable. When the function returns, the saved frame
pointer will be restored into the frame pointer register.

We use this mechanism to efficiently implement our
countermeasure: instead of using multiple stack pointers,
we modify the offset to the frame pointer that is used to ac-
cess the variable. We add (stacknr — 1) * (sizeof stack +
pagesize) to the offset, which will result in the access of
the variable on the correct stack. As such all operations that
use this variable will use the correct stack to address it. This
also means we don’t incur any overhead because the offset
will simply be a larger constant value, but the instruction to
access it will remain the same.

Because the program is instrumented in this way, the
stack pointer will remain unchanged and effectively con-
trols all five stacks. The advantage is that sezjmp and

3GIMPLE is a language- and target-independent tree representation of
the program being compiled. The compiler will convert the program into
static single assignment form (SSA) at this level.

4RTL is the register transfer language, a language-independent, but
target-dependent, intermediate representation used by the the compiler to
do some optimizations.



Stack 1 Stack 2 Stack 3 Stack 4 Stack 5
Arrays of Structures (no Str.uctures
Pointers Pointers char array) (with char
Array of struct array) Arravs of
Structures (no (no char array) Arrays of y
arrays) A structures characters
Saved A"rray?) o
registers oca with char
’ Integers Floats array)
LTI S T Z 7 i T

Figure 2. Stack layout for 5 stacks

Higher addresses

Stack 1 Stack 2
Return address f1
Saved frame

pointer f1
Pointer p1

Array of

characters

Pointer p2

Lower addresses

Figure 3. Gaps on the different stacks

longjmp> will work unchanged. The drawback of this coun-
termeasure is that it will result in gaps on the remaining
stacks, resulting in wasted memory. Figure 3 depicts this
for two stacks. We provide a more detailed discussion on
the memory overhead in section 4.

A special case which we did not address in the design
and the categories above is memory allocated with alloca.
The information stored in it could be both an attack vector
to overwrite other memory and could contain information
which could be used to perform a code injection attack (e.g.
a function or data pointer). Given this, we chose to modify
this call to allocate memory on stack three in the case of five
stacks and stack two in the case of two stacks.

4 Evaluation

To test the performance overhead, we ran several bench-
marks on programs instrumented with our countermeasure
(running with 5 stacks) and without. All tests were run

5The longjmp function will jump to the last place in the code where a
setjmp was executed, resetting the stack pointer (and other registers) to the
value they held at the moment sezjmp was called.

on a single machine (Pentium 4 2.80 Ghz, 512MB RAM,
no hyper-threading, running Ubuntu Linux 5.10 with kernel
2.6.12.10). The GCC compiler version 4.1-20050902 was
used to compile all benchmarks.

4.1 Performance

This section evaluates our countermeasure in terms of
performance overhead. Both macro- and microbenchmarks
were performed.

Macrobenchmarks
All programs but one (252.eon is written in C++, while
our prototype implementation is only for C) in the
SPEC®CPU2000 Integer benchmark [14] were used to
perform these benchmarks.

Table 2 contains the amount of code present in a particu-
lar program (expressed in lines of code), the runtime in sec-
onds when compiled with the unmodified gcc and the run-
time when compiled wih our multistack countermeasure.
The results in this table show that the performance over-
head of using our countermeasure are negligible for most of
these programs. There is a slightly higher overhead of 2-3%
for the programs vortex and twolf. The negative overheads
in the table are so low that they can be attributed to normal
variations between runs and, as such, these overheads can
be considered equal.

Microbenchmarks
Two programs which make extensive use of the stack were
run as a microbenchmark. One program which simply calls
a function 1 million times. This function performs an addi-
tion of two local variables (filled with "random’® values),
fills a local array with this random value, and allocates
and frees a chunk of random size. The second program
performs a recursive Fibonacci calculation of the 42nd Fi-
bonacci number. These programs were each run 100 times
both compiled with the unmodified gcc and our multistack
countermeasure. Table 2 contains the average runtime in
seconds, followed by the standard error for both versions.

6We use a fixed seed for the random function, so the generated values
are the same over different runs.



Table 2. Benchmark results

SPEC CPU2000 Integer benchmarks
Program LOC Gcee 4.1 (s) | Multistack (s) | Overhead
164.gzip 8,616 201 201 0%
175.vpr 17,729 213 212 -0.47%
176.gcc 222,182 89.7 89.8 0.11%
181.mcf 2,423 248 249 0.4%
186.crafty 21,150 116 115 -0.86%
197 .parser 11,391 257 255 -0.78%
253.perlbmk | 85,185 150 151 0.67%
254.gap 71,430 101 101 0%
255.vortex 67,220 169 174 2.96%
256.bzip2 4,649 204 203 -0.49%
300.twolf 20,459 291 297 2.06%

Microbenchmarks

loop 20 | 9.166 + 0.029 9.2 +0.015 0.37%
fibonacci 14 | 3.354 £ 0.004 | 3.363 £ 0.005 0.27%

These results also confirm that the performance overhead
of using our countermeasure is negligible.

4.2 Memory overhead

The maximum memory overhead (which is also the gen-
eral case) of this countermeasure will be the original stack
usage multiplied by the amount of stacks that are used.

Because variables are calculated by simply adding a con-
stant value to the frame pointer, we end up with gaps on all
stacks and waste space on all stacks. To reduce the waste,
we are planning to implement a version where we calculate
the actual location that the variable is on for every stack.
This would eliminate gaps in a function entirely. Some gaps
would still exist between function calls (because we still
only have one stack pointer), but these could be reduced to
be equal to the amount of space used on the largest stack.
This still allows us to use a single stack pointer, because all
other stacks will continue to have gaps, but these gaps will
be much smaller than in the current implementation. Since
all these calculations can be done at compile time, no extra
performance overhead would be incurred.

5 Discussion and ongoing work

Most applications will never increase the default stack
size, however, applications that do, may be limited in the
size their stack may grow to a predetermined maximum,
since the location of the stacks must be set to a fixed location
when the program is compiled. However, if the maximum
size that the stack could grow to is known beforehand, the
locations of the different stacks can easily be moved to ac-
commodate a larger stack. The application would only lose

virtual address space when moving the stacks further apart
and would not use any extra physical memory until the data
is written to these pages. We discuss a possible solution to
this problem below.

Our approach is incompatible with most address space
layout randomization (ASLR) [28] implementations. This
can be mitigated by finding the start of the stack dynami-
cally at program start up, when setting up the extra stacks.
This can be done either by recursively following the saved
frame pointer values or by modifying the ASLR implemen-
tation to store the value in a known location (e.g. the normal
stack location) at program start up and subsequently clear-
ing it when the multiple stacks have been set up.

Because not all applications can afford to use five stacks,
but would still like more security than simply reducing the
amount of stacks to two can offer, we are currently working
on extending the countermeasure by a concept which we
call selective bounds checking. Selective bounds checking
will only bounds check write operations to some types of ar-
rays to prevent them from being overflown. If, for example,
we can bounds check write accesses to arrays of pointers,
we could determine that the risk of it being used as an at-
tack vector was reduced low enough to place it in the first
category. While the bounds checking for direct access is
straightforward (we instrument the program to dynamically
check if the index is within the bounds of the array), we do
static analysis to determine how to instrument indirect ac-
cesses to an array. This means that our bounds checker will
not find all cases of such accesses, but since we’re only in-
terested in reducing the risk of already unlikely attack vec-
tors (like arrays of pointers), this is acceptable. Because
most programs do not operate heavily on these unlikely
vectors, the performance overhead of adding this type of



bounds checking will likely be low.

If this selective bounds checker is applied to reduce the
amount of stacks to two, it could be realistic to reserve a
register as a stack pointer for this second stack. This would
allow us to place this second stack anywhere in memory
which would solve both the fixed stack size problem, the
incompatibility with ASLR and would eliminate the gaps.
However, a possible performance overhead will probably
be incurred because this extra register must be modified in
much the same way as the original stack pointer.

One vulnerability that is present in existing countermea-
sures, that we did not address in our countermeasure either
is the fact that a structure can contain both a pointer and
an array of characters, giving the attacker the possibility to
overwrite this pointer using the array of characters. The
same is true for memory allocated with alloca (it can be used
to store array of characters and pointers). This is an impor-
tant limitation, however, this type of vulnerability does not
occur often in practice, so the limitation is unlikely to sig-
nificantly undermine the protection.

A non-control data attack [9] that relies on modifying a
character array would still work, but is severely limited to
only being able to overwrite character arrays.

Our approach also does not detect when a buffer over-
flow has occurred. It is, however, possible to easily and
efficiently add such detection as an extension to our imple-
mentation by using the technique used by StackGuard and
Propolice of placing a random number on the stack and ver-
ifying it before returning from the function. This canary
would be placed on every stack and compared to the value
stored on the first stack before returning. Since the random
number is mirrored, we can also use a per function canary,
rather than a global one, reducing the risk of an attacker
discovering one random number and using it to circumvent
the detection in another function. If an attacker does dis-
cover the value, the countermeasure will no longer be able
to perform detection, but it will not be circumvented, be-
cause only the detection and not the security relies on it.

6 Related work

Many countermeasures against code injection attacks ex-
ist. In this section, we briefly describe the different ap-
proaches that could be applicable for protecting against
buffer overflows. The focus is more on the countermea-
sures which are designed specifically to protect the stack
from stack-smashing attacks.

6.1 Protection from attacks on stack-
based vulnerabilities

Because the stack-based buffer overflow is a very
widespread vulnerability, many countermeasures have been

designed to protect against attacks on the stack. In this sec-
tion we discuss the countermeasures which are most closely
related to our countermeasure.

Two related countermeasures, StackGuard [12] and
Propolice [13] were both discussed in section 2. They rely
on random values that must remain secret to provide protec-
tion.

Stack Shield [29] is a countermeasure that attempts to
protect against stack smashing attacks by copying the re-
turn address to another memory location, before entering
the function call and restoring it just before returning from
the function. This is an efficient countermeasure and will
protect the return address from attack, but will still allow an
attacker to use indirect pointer overwriting [8] to bypass the
protection.

RAD [10] is similar to Stack Shield, except that it com-
pares the return addresses stored at both locations and will
terminate the program if they are different. It solves some
compatibility problems of Stack Shied and also better pro-
tects the area where the return addresses are copied to.
However, it will still only protect return addresses and, thus,
could be bypassed using indirect pointer overwriting.

Xu et al. [31] suggest a similar approach to Stack Shield.
Their countermeasure splits the stack into a control and a
data stack. The control stack stores the return addresses
while the data stack contains the rest of the data stored on
the stack. Their implementation copies the return address
to the the control stack before entering the function call and
copies it back from the control stack onto the data stack be-
fore returning from the function. The authors provide per-
formance results for the SPEC CPU2000 benchmarks, the
performance overheads associated with this approach range
from 0.01% for 181.mcf to 23.77% for 255.vortex.

Libverify [5] offers the same kind of protection as Stack
Shield: upon entering a function it saves the return address
on a return address stack (that it calls a canary stack) and
when exiting from a function the saved return address is
compared to the actual return address. The main difference
with Stack Shield lies in the way that this check is added:
Libverify does not require access to the source code of the
application, the checks are added by dynamically linking
the process with the library at run-time.

Libsafe [5] replaces the string manipulation functions
that are prone to misuse with functions that prevent a buffer
from being overflown outside its stackframe. This is done
by calculating the size of the input string and then mak-
ing sure that the size of the source string is less than the
upper bound of the destination string (the space from the
variable’s stack location to the saved frame pointer). If it
is not smaller, the program will be terminated. Again, as is
the case with several other countermeasures, this protection
can be bypassed using indirect pointer overwriting.



6.2 Alternative approaches

Other approaches that protect against the more general
problem of buffer overflows also protect against stack-based
buffer overflows. In this section, we give a brief overview
of this work.

6.2.1 Compiler-based countermeasures

Bounds checking [17, 4, 15, 21, 23, 24, 32] is the ideal
solution for buffer overflows, however, performing bounds
checking in C can have a severe impact on performance
or may cause existing object code to become incompatible
with bounds checked object code.

Protection of all pointers as provided by PointGuard [11]
is an efficient implementation of a countermeasure that will
encrypt (using XOR) all pointers stored in memory with
a randomly generated key and decrypts the pointer before
loading it into a register. To protect the key, it is stored
in a register upon generation and is never stored in mem-
ory. However, attackers could guess the decryption key if
they were able to view several different encrypted pointers.
Another attack described in [3] describes how an attacker
could bypass PointGuard by partially overwriting a pointer.
By only needing a partial overwrite, the randomness can be
reduced, making a brute force attack feasible (1 byte: 1 in
256, 2 bytes: 1 in 65536, instead of 1 in 232y,

6.2.2 Operating system-based countermeasures

Non-executable memory [26, 28] tries to prevent code injec-
tion attacks by ensuring that the operating system does not
allow execution of code that is not stored in the text segment
of the program. This type of countermeasure can, however,
be bypassed by a return-into-libc attack [30] where an at-
tacker executes existing code (possibly with different pa-
rameters).

Randomized instruction sets [6, 16] also try to prevent
an attacker from executing injected code by encrypting in-
structions on a per process basis while they are in memory
and decrypting them when they are needed for execution.
However, software based implementations of this counter-
measure incur large performance costs, while a hardware
implementation is not immediately practical. Determined
attackers may also be able to guess the encryption key and,
as such, be able to inject code [27].

Address randomization [28, 7] is a technique that at-
tempts to provide security by modifying the locations of
objects in memory for different runs of a program, how-
ever, the randomization is limited in 32-bit systems (usually
to 16 bits for the heap) and as a result may be inadequate
for a determined attacker [25].

6.2.3 Execution monitoring

In this section we describe two countermeasures that will
monitor the execution of a program and will prevent trans-
ferring control-flow which could be unsafe.

Program shepherding [18] is a technique that will mon-
itor the execution of a program and will disallow control-
flow transfers’ that are not considered safe. Program shep-
herding can be used for example to ensure that programs can
only jump to entry points of functions or libraries, denying
an attacker the possibility of bypassing checks that might
be performed before a certain action is taken in a function.
Another example of a use for program shepherding is to en-
force return instructions to only return to the instruction af-
ter the call site. The proposed implementation of this coun-
termeasure is done using a runtime binary interpreter, as a
result the performance impact of this countermeasure is sig-
nificant for some programs, but acceptable for others.

Control-flow integrity [1] determines a program’s con-
trol flow graph beforehand and ensures that the program
adheres to it. It does this by assigning a unique ID to each
possible control flow destination of a control flow transfer.
Before transferring control flow to such a destination, the
ID of the destination is compared to the expected ID, and
if they are equal, the program proceeds as normal. Perfor-
mance overhead may be acceptable for some applications,
but may be prohibitive for others.

7 Conclusion

In this paper we described a countermeasure that pro-
tects against stack-based buffer overflows which has neg-
ligible performance overhead, while solving some of the
shortcoming of existing efficient countermeasures. We as-
sign all the different data types stored on the stack a high,
medium or low ranking, both for the risk of it being an at-
tack vector and the value it has as a possible target. Using
this information we assigned the data on the stack to differ-
ent categories. Each of these categories was then mapped
onto a separate stack. This effectively separated high-value
targets from data which has a high risk of being used to
launch an attack. A straight mapping of categories resulted
in an implementation which has a very low performance
overhead and offers better protection than existing counter-
measures. However, the memory usage in our implemen-
tation is higher than most other countermeasures, and we
discuss possible ways to reduce it. One of the important ad-
vantages of our approach over existing approaches, is that
it does not rely on the secrecy of canaries. Our counter-
measure remains secure even if an attacker is able to read
arbitrary memory locations.

7Such a control flow transfer occurs when e.g. a call or ret instruction
is executed.
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