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Abstract

Many countermeasures exist to protect the stack and
heap from code injection attacks, however very few counter-
measures exist that will specifically protect global and static
variables from attack. In this paper we suggest a way of
protecting global and static variables from these type of at-
tacks, with negligible performance and memory overheads.
Our approach is based on the idea of separating data in de
data segment based on its type. These separated areas are
then protected from each other by a guard page. This pre-
vents a buffer overflow from overwriting data or code point-
ers, in turn preventing attackers from being able to perform
a code injection attack.

1 Introduction

Vulnerabilities that could lead to code injection attacks
are a significant threat to the security of a system. The most
common form of code injection attack is the stack based
buffer overflow and many countermeasures [39] exist that
protect against this attack. The heap is also a source of
buffer overflows and there are some countermeasures that
will protect the heap from attack, however very few coun-
termeasures currently exist that will protect global and static
variables from these types of attack.

In [40] we describe a global approach to protect against
code injection attacks by separating data that the operating
system relies on from regular user data. This technique has
proven succesful from a security perspective as well as from
a performance perspective in protecting against heap-based
[42] and stack-based [41] overflows. While the basic idea
of separating user data from system data is the same in these
two countermeasures, the actual approaches that need to be
taken to separate the data turn out to be quite different. In
this paper we describe the details of how to apply this sepa-
ration idea to protect against attacks on global or static vari-
ables. Combining these three countermeasures leads to a

strong overflow protection against dynamically, automati-
cally and statically allocated memory. A major advantage
of these countermeasures is that they can be applied au-
tomatically without programmer intervention, they are au-
tomatically added when compiling and linking with these
countermeasures.

The paper is structured as follows: Section 2 describes
how a buffer overflow in this region can be used by an at-
tacker to gain control of the execution flow. Section 3 de-
scribes the main design principles of our countermeasure,
while Section 4 discusses limitations and how we plan to
implement the countermeasure. Section 5 compares our ap-
proach to other approaches. Finally, section 6 contains our
conclusion.

2 Static and global variables

In this section we describe how the memory that stores
static and global variables is organized and then examine
how an attacker could use a buffer overflow on one of this
variables to gain control of the execution flow on the IA32
architecture [15].

2.1 Memory layout

Figure 1 depicts the memory layout of a Linux process
on the IA32 architecture. Code is stored in the text segment,
while local (automatic) variables are stored on the stack.
Global, static data and the heap (dynamic memory) are all
stored in the data segment. The data segment however also
contains other important information that the operating sys-
tem relies on to execute the program.

Figure 2 provides an overview of the layout of the data
segment of a typical program. Static and global variables
which have been initialized at compile time are stored in
the data section, followed by the section containing the ex-
ception handling frame, which holds information needed
to handle exceptions in languages that support them (like
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Figure 2. Layout of the data segment

C++). This section is followed by the ctors and dtors sec-
tions, these execute registered functions at respectively pro-
gram start and program finish. Next, is the global offset
table, which is used by position independent code1 to ad-
dress absolute memory locations. Its values are set by the
runtime linker when new code is loaded, it also holds ab-
solute memory addresses for library functions. Static and
global variables which have not been initialized are stored
in the bss section, they are initialized to 0 in this area.

2.2 Exploitation

If attackers can overflow a variable in the data section,
they could easily overwrite data stored in the other sections.
Two favorite targets of attackers are the dtors and the got
sections.

The dtors section is comprised of a list of pointers to
functions to execute when the program terminates, termi-
nated with a NULL. If an attacker can overwrite these point-
ers, his code will be executed when the program terminates
[30].

The global offset table contains the absolute address of
shared library functions which are used by the procedure
linkage table to execute functions which have to be loaded
from a shared library at runtime. If an attacker modifies the
address of one of these functions (e.g. the printf function)
to point to injected code, the program will execute that code
when the library function is supposed to be called.

Overflows in the bss section can not overwrite any of the
other sections because the bss section is stored last. How-
ever, immediately following the bss section is the heap, thus
an attacker could use an overflow in the bss section to per-
form a heap-based buffer overflow [33] which could also
allow him to gain control of the execution flow.

3 Countermeasure

In this section we propose a countermeasure which could
protect against these types of attack. By separating the data
which can be used by an attacker to perform a code injec-
tion attack from data which could modify control flow if
changed, we can protect against this type of attack. The
concept of this countermeasure is straightforward: by reor-
ganizing the data segment and making sure that all impor-
tant information comes before any arrays, we can prevent
most attacks. We make sure that these arrays can not write
into the heap by placing a guard page2 between the last ar-

1PIC is code that can be loaded at any address, it does not address any
absolute memory locations

2A guard page is page of memory where no permission to read or to
write has been set. Any access to such a page will cause the program to
terminate.
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ray and the heap3. Since the size of the data segment is
known at compile time, adding such a guard page at load
time does not introduce any problems.

Figure 3 illustrates the modified memory layout: first is
the memory which only contains data used by the loader:
the constructors, destructors, global offset table, the excep-
tion handling frame, etc. Since a program should not be
able to change them, these can be stored at the start of the
segment. While a major avenue for attack has been closed
off by preventing arrays from overflowing into the destruc-
tors section and the global offset table, an attacker could still
use an overflow in the data or bss section to overwrite data
in that section. To prevent this from occurring we divide
the data into three categories: not-overflowable (ordered by

3A page on IA32 is 4096 bytes, this means that if we want to add a
guard page, the memory preceding the guard page will need to be aligned
on 4096 bytes. Adding such a page after all memory locations would be
introduce a prohibitive memory overhead [29]

the risk they pose if they are a target for attack), overflow-
able (ordered from less likely to overflow to more likely)
but also a target of attacks and just overflowable (ordered
by how likely they will overflow).

Pointers could be overwritten to perform a code injection
attack, but are not exploitable on their own, so we place
them in the first category. Integers can hold pointers or
can be used as offsets to a pointer, so they could also be
used to perform indirect pointer overwrites. Although they
are overflowable, they will never use more than the mem-
ory allocated for them since they will wrap around zero on
overflow, as such we can place them in the same category
as pointers. Structures and unions that do not contain any
arrays come next, they could contain pointers that could
be overwritten, but do not contain any arrays so they are
not overflowable. The last element of the first category are
floats, they are not overflowable and are also not a likely
target for attack.

The second category contains data which can overflow
in theory, but which could also be used to perform an indi-
rect pointer overwrite. This data is sorted by the risk posed
if it is attacked: higher risk data is stored first so that if an
overflow occurs, it can only overwrite equally or less risky
data. The first element in this category are arrays of pointer,
followed by arrays of integers. Next we place structures
and unions which contain arrays, but not arrays of charac-
ters, arrays of these structures and unions, structures and
unions which contain arrays of characters and finally arrays
of these structures.

The third category only contains data which is overflow-
able, ordered by how likely they are to be overflown. The
first elements stored here are arrays of floats, these do not
contain information which could easily lead to a code injec-
tion attack and could overflow. Arrays of characters, which
are most often targeted by attackers, because they are of-
ten used with vulnerable string manipulation functions (e.g.
strcpy), are placed last.

The data layout that these three categories provide are
used for both the data and bss sections which are stored
next to each other. To protect the bss section from the arrays
of characters from the data section, we place a guard page
between the two sections.

By separating the data which can influence control from
data which is can be modified by the user, we can protect
against buffer overflow attacks in these sections.

4 Discussion

It may still be possible to perform a code injection at-
tack using a buffer overflow on a structure that contains
both an array of characters and a pointer since these types
of structures will be stored in a contiguous region of mem-
ory. This is a limitation of the approach that can not easily



be fixed because the C standard[18] mandates that all struc-
tures must be stored in order in contiguous memory. Many
other countermeasures, including bounds checkers suffer
from this limitation. Given that correct code can rely on this
feature of the C language, it is hard to protect against such
an attack. To reduce the risk of attack, we treat structures
containing arrays of characters different from other struc-
tures: by storing them below regular structures. While this
does not solve the problem, it reduces the risk of successful
exploitation because attackers can only overflow informa-
tion stored below this type of structure.

Integer errors could also be used to perform a buffer
overflow because they could be used to overwrite arbitrary
memory locations, without requiring a contiguous buffer
overflow. This would bypass the protection provided by the
guard page. This is an important limitation in our approach
and must be taken into account when applying this counter-
measure.

Implementation of this countermeasure will require
some substantial modifications to the compiler, the linker
and the loader, however because only the layout is changed,
it should not bring any extra performance overhead with it.
Because the size of all the sections are known at load time,
changing the layout will not add much memory overhead ei-
ther: each section followed by a guard page will have to be
aligned to page size, which means that the maximum over-
head per section would be 4095 bytes (if only 1 byte is used
on the last page of that section). Since only 2 guard pages
are used, the countermeasure has a maximum overhead of
8190 bytes. The guard pages themselves will only take up
virtual memory, since they are not accessed, no physical
memory is consumed.

5 Related work

Not many countermeasures exist that specifically try to
protect this type of data. Although some of the more global
approaches (like bounds checking) will also protect global
and static variables. In this section we will first discuss
the only other countermeasure that specifically targets this
memory and will then briefly discuss the more global ap-
proaches.

Drepper [11] implemented a countermeasure which re-
organizes the data segment so that the data and bss sections
are placed similarly to the way we describe earlier. How-
ever he does not reorganize the data within these sections
so arrays of characters could still overwrite pointers in these
sections. He also does not add guard pages which will pro-
tect the heap from being attacked by the bss section.

5.1 Alternative approaches

Many alternative approaches exist that try and protect
against buffer overflow attacks. In this section we will
briefly discuss the most important types of countermea-
sures. A more extensive discussion can be found in [38, 12].

5.1.1 Probabilistic countermeasures

Many countermeasures make use of randomness when pro-
tecting against attacks. Many different approaches ex-
ist when using randomness for protection. Canary-based
countermeasures [9, 13, 23, 31] use a secret random num-
ber that is stored before an important memory location:
if the random number has changed after some operations
have been performed, then an attack has been detected.
Memory-obfuscation countermeasures [8, 5] encrypt (usu-
ally with XOR) important memory locations or other infor-
mation using random numbers. Memory layout randomiz-
ers [35, 4, 36, 6] randomize the layout of memory: by load-
ing the stack and heap at random addresses and by placing
random gaps between objects. Instruction set randomizers
[3, 19] encrypt the instructions while in memory and will
decrypt them before execution.

While these approaches are often efficient, they rely on
keeping memory locations secret. However, programs that
contain buffer overflows could also contain ”buffer over-
reads” (e.g. a string which is copied via strncpy but not
explicitly null-terminated could leak information) or other
vulnerabilities like format string vulnerabilities, which al-
low attackers to print out memory locations. Such memory
leaking vulnerabilities could allow attackers to bypass this
type of countermeasure.

5.1.2 Bounds checkers

Bounds checking [20, 34, 2, 17, 25, 27, 32, 28] is a better
solution to buffer overflows, however when implemented
for C, it often has a severe impact on performance or may
cause existing code to become incompatible with bounds
checked code.

5.1.3 Safe languages

Safe languages are languages where it is generally not pos-
sible for any known code injection vulnerability to exist
as the language constructs prevent them from occurring.
A number of safe languages are available that will pre-
vent these kinds of implementation vulnerabilities entirely.
There are safe languages [16, 14, 26, 24, 10, 22, 37] that
remain as close to C or C++ as possible, these are gener-
ally referred to as safe dialects of C. While some safe lan-
guages [7, 37] try to stay more compatible with existing C



programs, use of these languages may not always be practi-
cal for existing applications.

5.1.4 Execution monitors

In this section we describe two countermeasures that mon-
itor the execution of a program and prevent transferring
control-flow which could be unsafe.

Program shepherding [21] is a technique that monitors
the execution of a program and will disallow control-flow
transfers4 that are not considered safe. An example of a
use for shepherding is to enforce return instructions to only
return to the instruction after the call site. The proposed
implementation of this countermeasure is done using a run-
time binary interpreter. As a result, the performance impact
of this countermeasure is significant for some programs, but
acceptable for others.

Control-flow integrity [1] determines a program’s con-
trol flow graph beforehand and ensures that the program
adheres to it. It does this by assigning a unique ID to each
possible control flow destination of a control flow transfer.
Before transferring control flow to such a destination, the
ID of the destination is compared to the expected ID, and
if they are equal, the program proceeds as normal. This ap-
proach, while strong and in the same efficiency range as our
approach, does not protect against non-control data attacks.

6 Conclusion

Many countermeasures exist to protect against attacks on
stack-based buffer overflows, however only very few exist
that will effectively protect against attacks on global and
static variables with a low performance overhead. In this
paper we suggested an approach which would better pro-
tect this region of memory from attack while only having
negligible performance and memory overhead.
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