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ABSTRACT
Code injections attacks are one of the most powerful and important
classes of attacks on software. In such attacks, the attacker sends
malicious input to a software application, where it is stored in mem-
ory. The malicious input is chosen in such a way that its represen-
tation in memory is also a valid representation of a machine code
program that performs actions chosen by the attacker. The attacker
then triggers a bug in the application to divert the control flow to
this injected machine code. A typical action of the injected code
is to launch a command interpreter shell, and hence the malicious
input is often called shellcode.

Attacks are usually performed against network facing applica-
tions, and such applications often perform validations or encodings
on input. Hence, a typical hurdle for attackers, is that the shell-
code has to pass one or more filtering methods before it is stored
in the vulnerable application’s memory space. Clearly, for a code
injection attack to succeed, the malicious input must survive such
validations and transformations. Alphanumeric input (consisting
only of letters and digits) is typically very robust for this purpose:
it passes most filters and is untouched by most transformations.

This paper studies the power of alphanumeric shellcode on the
ARM 32 bit RISC processor. It shows that the subset of ARM ma-
chine code programs that (when interpreted as data) consist only
of alphanumerical characters is a Turing complete subset. This
is a non-trivial result, as the number of instructions that consist
only of alphanumeric characters is very limited. To craft useful ex-
ploit code (and to achieve Turing completeness), several tricks are
needed, including the use of self-modifying code.

Categories and Subject Descriptors
D.4.6 [Operating systems]: Security and Protection

General Terms
Security
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1. INTRODUCTION
With the rapid spread of mobile devices, the ARM processor has

become the most widespread 32-bit CPU core in the world. ARM
processors offer a great trade-off between power consumption and
processing power, which makes them an excellent candidate for
mobile and embedded devices. About 98% of mobile phones and
personal digital assistants feature at least one ARM processor.

Only recently, however, have these devices become powerful
enough to let users connect over the internet to various services,
and to share information as we are used to on desktop PCs. Unfor-
tunately, this introduces a number of security risks: mobile devices
are more and more subject to external attacks that aim to control
the behavior of the device.

A very important class of such attacks is code injection attacks.
These attacks conceptually consist of two steps. First, the attacker
sends data to the device. This data is stored somewhere in memory
by the software application receiving it. The data is chosen such
that, when stored in memory, it also represents a valid machine
code program: if the processor were to jump to the start address
of the data, it would execute it. Such data is often called shell-
code, since a typical goal of an attacker is launching a command
interpreter shell.

In a second step, the attacker triggers a vulnerability in the device
software to divert the control flow to his shellcode. There is a wide
variety of techniques to achieve this, ranging from the classic stack-
based buffer overflow where the return address of a function call is
overwritten, to virtual function pointer overwrites, indirect pointer
overwrites, and so forth. An example of such an attack on a mobile
phone is Moore’s attack [25] against the Apple iPhone. This attack
exploits LibTIFF vulnerabilities [27, 28], and it could be triggered
from both the phone’s mail client and its web browser, making it
remotely exploitable. A similar vulnerability was found in the way
GIF files were handled by the Android web browser [29].

A typical hurdle for exploit writers, is that the shellcode has to
pass one or more filtering methods before reaching the vulnerable
buffer. The shellcode enters the system as data, and various valida-
tions and transformations can be applied to this data. An example
is an input validation filter that matches the input with a given regu-
lar expression, and blocks any input that does not match. A popular
regular expression for example is [a-zA-Z0-9] (possibly extended
by “space”). Another example is an encoding filter that encodes
input to make sure that it is valid HTML.
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Clearly, for a code injection attack to succeed, the data must sur-
vive all these validations and transformations. The key contribution
of this paper is that it shows that it is possible to write powerful
shellcode that passes such filters. More specifically, we show that
the subset of ARM machine code programs that (when interpreted
as data) consist only of alphanumerical characters (i.e. letters and
digits) is a Turing complete subset. This is a non-trivial result, as
the ARM is a RISC architecture with fixed width instructions of
32 bits, and hence the number of instructions that consist only of
alphanumeric characters is very limited.

The rest of this paper is structured as follows. In Section 2 we
provide sufficient background information on code injection at-
tacks and on the ARM architecture to understand the rest of the
paper. In Section 3 we identify the instructions that can be used
when one restricts memory to only contain alphanumeric charac-
ters. Section 4 shows by means of a number of examples that this
severely limited instruction set can still do useful things, and Sec-
tion 5 shows that it is actually a Turing complete subset of the ARM
instruction set. Finally, we discuss related work and conclude in
Sections 6 and 7.

2. BACKGROUND
This section provides some background information that is needed

for understanding the rest of the paper.

2.1 Code injection attacks and countermea-
sures

Several vulnerabilities can exist in software written in unsafe lan-
guages such as C that can allow attackers to perform a code injec-
tion attack. During such an attack, control flow is redirected to
memory where the attacker has placed data that the processor will
interpret as code. The most commonly exploited type of vulnera-
bility that allows code injection is the stack-based buffer overflow
[2]. However, buffer overflows in other memory regions like the
heap [4] or the data segment [6] are also possible. Attackers have
also been able to exploit format string vulnerabilities [35], dangling
pointer references [15] and integer errors [10] to achieve similar re-
sults.

Many different countermeasures [46, 17] focus on defending ap-
plications against these types of attacks. Some aim to prevent the
vulnerability from becoming exploitable by verifying that an ex-
ploitation attempt has occurred: via bounds checking [21, 34, 48];
by inserting secret cookies, which must remain unmodified, before
important memory locations [14, 18]. Others will make it harder
for an attacker to execute injected code by randomizing the base
address of memory regions [7, 9], encrypting pointers [13], code
[5, 22] or even all objects [8] while in memory and decrypting them
before use. While yet other types of countermeasures will try and
ensure that the program adheres to some predetermined policy [1,
23, 30].

Attackers have found ways of bypassing many of these coun-
termeasures. These bypasses range from overwriting control flow
information not protected by the countermeasure [12, 32], to guess-
ing or leaking the secret associated with countermeasures [37, 43,
44], to executing existing code rather than injecting code [40, 45,
36, 11], to performing intricate attacks that make use of proper-
ties of higher level languages (like JavaScript in the webbrowser)
to create an environment suitable to exploit a low-level vulnerabil-
ity [42]. One example of such an attack is a heap-spraying attack,
that fills the heap with shellcode via JavaScript, thereby severely
increasing the likelihood of successfully executing injected code
even if address space layout randomization is used [31].

Ensuring that all memory is set to be non-executable would pre-

vent the attacker from executing injected code and would thus pre-
vent the code discussed in this paper from being executed. How-
ever, several attacks exist that can bypass non-executable mem-
ory [38, 3], allowing attackers to mark the memory where they
injected their code as executable. Moreover, setting all memory
non-executable causes incompatibilities with some programs: no-
tably the Java VM expects an executable stack. Some implementa-
tions of non-executable memory also limit this to only set the stack
non-executable, but leave the heap or other memory regions exe-
cutable, providing the attacker with a place to store and execute
injected code. By default, Linux does not set any memory to be
non-executable for compatibility reasons. As a result, code injec-
tion attacks are still realistic threats [41].

2.2 The ARM architecture
The ARM architecture [39] is the dominating processor archi-

tecture for cell phones and other embedded devices. It is a 32-bit
RISC architecture developed by ARM Ltd. and licensed to a num-
ber of processor manufacturers. Due to its low power consumption
and architectural simplicity, it is particularly suitable for resource
constrained and embedded devices.

The ARM processor features sixteen general purpose registers,
numbered r0 to r15. Apart from the program counter register,
r15 or its alias pc, all registers can be used for any purpose. There
are, however, conventional roles assigned to some particular regis-
ters. In addition to these general purpose registers, ARM proces-
sors also contain the Current Program Status Register (CPSR). This
register stores different types of flags and condition values. This
register cannot be addressed directly.

This section will explain some of the features of the ARM archi-
tecture, and the key differences between this and other architectures
such as the Intel x86 architecture.

2.2.1 Function calls
Due to the large number of registers, the ARM application bi-

nary interface stipulates that the first four parameters of a function
should be passed via registers r0 to r3. If there are more than four
parameters, the subsequent parameters will be pushed on the stack.
Likewise, the return address of a function is not always pushed on
the stack. The BL instruction, which calculates the return address
and jumps to a specified subroutine, will store the return address in
a register.

2.2.2 Addressing modes
ARM instructions share common ways to calculate memory ad-

dresses or values to be used as operands for instructions. These
calculations of memory address are called addressing modes. A
number of different addressing modes exist, some of which will be
explained in this section.

The ARM architecture is a 32-bit architecture, hence it is im-
perative that the operands of instructions must be able to span the
entire 32-bit addressing range. However, since ARM instructions
are 32 bits and a number of these bits are used to encode the in-
struction OP code, operands and parameters, operands that repre-
sent immediate values will never be able to store a full 32-bit value.
To overcome this problem, some addressing modes support differ-
ent types of shifts and rotations. These operations make it possible
to quickly generate large numbers (via bit shifting), without having
to specify them as immediate values.

The following subsections will describe a number of addressing
modes that are used on ARM. These addressing modes are selected
because they will be used extensively in the rest of the paper.
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Addressing modes for data processing.
The first type of addressing mode is the mode that is used for

the data processing instructions. This includes the instructions that
perform arithmetic operations, the instructions that copy values into
registers, and the instructions that copy values between registers.

In the general case, a data processing instruction looks like this:

< i n s t r u c t i o n > <Rd> , <Rn> , < s h i f t e r _ o p e r a n d >

In this example, Rd is a placeholder for the destination register,
and Rn represents the base register.

The addressing mode is denoted in the above listing as the shifter_
operand. It is twelve bits large and can be one of eleven subcate-
gories. These subcategories perform all kinds of different opera-
tions on the operand, such as logical and arithmetic bit shifts, bit
rotations, or no additional computation at all. Some examples are
given below:

MOV r1 , #1
ADD r5 , r6 , r1 , LSL #2
SUB r3 , r5 , #1
MOV r0 , r3 , ROR r1

The first MOV instruction simply copies the value one into reg-
ister r1. The form of the MOV instruction is atypical for data pro-
cessing instructions, because it doesn’t use the base register Rn.

The ADD instruction uses an addressing mode that shifts the value
in r1 left by two places. This result is added to the value stored in
r6, and the result is written to register r5.

The SUB instruction uses the same addressing mode as the first
MOV instruction, but also uses the base register Rn. In this case, the
value one is subtracted from the value in base register r5, and the
result is stored in r3.

Finally, a second MOV operation rotates the value in r3 right by
a number of places as determined by the value in r1. The result is
stored in r0.

Addressing modes for load/store.
The second type of addressing mode is used for instructions that

load data from memory and store data to memory. The general
syntax of these instructions is:

<LDR i n s t r > <Rd> , addr_mode
<STR i n s t r > <Rd> , addr_mode

The addr_mode operand is the memory address where the data
resides, and can be calculated with one of nine addressing mode
variants. Addresses can come from immediate values and registers
(potentially scaled by shifting the contents), and can be post- or
pre-incremented.

Addressing modes for load/store multiple.
The third type of addressing mode is used with the instructions

that perform multiple loads and stores at once. The LDM and STM
instructions take a list of registers, and will either load data into the
registers in this list, or store data from these registers in memory.
The general syntax for multiple loads and stores looks like this:

<LDM i n s t r ><addr_mode > <Rn > { ! } , < r e g i s t e r s >
<STM i n s t r ><addr_mode > <Rn > { ! } , < r e g i s t e r s >

The addr_mode operand can be one of the following four pos-
sibilities: increment after (IA), increment before (IB), decrement
after (DA), or decrement before (DB). In all cases, Rn is used as
the base register to start computing memory addresses where the
selected registers will be stored. The different addressing modes
specify different schemes of computing these addresses.

When the optional exclamation mark after the base register is
present, the processor will update the value in Rn to contain the
newly computed memory address.

2.2.3 Conditional Execution
Almost every instruction on an ARM processor can be executed

conditionally. The four most-significant bits of these instructions
encode a condition code that specifies which condition should be
met before executing the instruction. Prior to actually executing
an instruction, the processor will first check the CPSR register to
ensure that its contents corresponds to the status encoded in the
condition bits of the instruction. If the condition code does not
match, the instruction is discarded.

The CPSR state can be updated by calling the CMP instruction,
much like on the Intel x86 architecture. This instruction compares
a value from a register to a value calculated in a shifter_operand
and updates the CPSR bits accordingly. In addition to this, every
other instruction that uses the addressing mode for dataprocessing
can also optionally update the CPSR register. In this case, the result
of the instruction is compared to the value 0.

When writing ARM assembly, the conditional execution of an
instruction is represented by adding a suffix to the name of the in-
struction that denotes in which circumstances it will be executed.
Without this suffix, the instruction will always be executed. If the
instruction supports updating the CPSR register, the additional suf-
fix ‘S’ indicates that the instruction should update the CPSR regis-
ter.

The main advantage of conditional execution is the support for
more compact program code. As a short example, consider the
following C fragment:

i f ( e r r != 0 )
p r i n t f ( " E r r o r c o d e = %i \ n " , e r r ) ;

e l s e
p r i n t f ( "OK! \ n " ) ;

By default, GCC compiles the above code to:

CMP r1 , #0
BEQ . L4
LDR r0 , < s t r i n g _ 1 _ a d d r e s s >
BL p r i n t f
B . L8

. L4 :
LDR r0 , < s t r i n g _ 2 _ a d d r e s s >
BL p r i n t f

. L8 :

The value in r1 contains the value of the err variable, and is
compared to the value 0. If the contents of r1 is zero, the code
branches to the label .L4, where the string ‘OK!’ is printed out. If
the value in r1 isn’t zero, the BEQ instruction is not executed, and
the code continues to print out the ErrorCode string. Finally, it
branches to label .L8.

With conditional execution, the above code could be rewritten
as:

CMP r1 , #0
LDRNE r0 , < s t r i n g _ 1 _ a d d r e s s >
LDREQ r0 , < s t r i n g _ 2 _ a d d r e s s >
BL p r i n t f

The ‘NE’ suffix means that the instruction will only be executed
if the contents of, in this case, r1 is not equal to zero. Similarly,
the ‘EQ’ suffix means that the instructions will be executed if the
contents of r1 is equal to zero.
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2.2.4 Thumb Instructions
In order to further increase code density, most ARM processors

support a second instruction set called the Thumb instruction set.
These Thumb instructions are 16 bits in size, compared to the 32
bits of ordinary ARM instructions. Prior to ARMv6, only the T
variants of the ARM processor supported this mode (e.g. ARM4T).
However, as of ARMv6, Thumb support is mandatory.

Instructions executed in 32 bit mode are called ARM instruc-
tions, whereas instructions executed in 16 bit mode are called Thumb
instructions. Unlike ARM instructions, Thumb instructions do not
support conditional execution.

Since instructions are only two bytes large in Thumb mode, it
is easier to satisfy the alphanumeric constraints for instructions be-
cause we only need to get two bytes alphanumeric instead of four.
To this end, we will discuss how to get into Thumb mode from
ARM mode using only alphanumeric instructions. For programs al-
ready running in Thumb mode, a way of going back to ARM mode
is also discussed. In order to achieve the broadest possible com-
patibility with earlier versions of ARM that do not support Thumb
mode, Thumb instructions will not be used as part of our shellcode.

3. ALPHANUMERIC CODE
In most cases, alphanumeric bytes are likely to get through con-

versions and filters unmodified. Therefore, having shellcode with
only alphanumeric instructions is sometimes necessary and often
preferred.

An alphanumeric instruction is an instruction where each of the
four bytes of the instruction is either an upper case or lower case
letter, or a digit. In particular, the bit patterns of these bytes must
always conform to the following constraints:

• The most significant bit, bit 7, must be set to 0

• Bit 6 or 5 must be set to 1

• If bit 5 is set to 1, but bit 6 is set to 0, then bit 4 must also be
set to 1

These constraints do not eliminate all non-alphanumeric charac-
ters, but they can be used as a rule of thumb to quickly dismiss
most of the invalid bytes. Each instruction will have to be checked
whether its bit pattern follows these conditions and under which
circumstances.

It is worth emphasizing that these constraints are tough: only
0.34% of the 32 bit words consist of 4 alphanumerical bytes.

This section will discuss some of the difficulties of writing al-
phanumeric code. When we discuss the bits in a byte, we will
maintain the definition as introduced above: the most significant
bit in a byte is bit 7 and the least significant bit is bit 0. The first
byte of an ARM instruction is bits 31 to 24 and the last byte is bits
7 to 0.

3.1 Alphanumeric Instructions
The ARM processor (in its v5 incarnation) has 147 instructions.

Most of these instructions cannot be used in alphanumeric code,
because at least one of the four bytes of the instruction is not al-
phanumeric. In addition, we have also filtered out instructions that
require a specific version of the ARM processor, in order to keep
our work as broadly applicable as possible.

After filtering the instructions, only 18 instructions remain: B/BL,
CDP, EOR, LDC, LDM(1), LDM(2), LDR, LDRB, LDRBT, LDRT,
MCR, MRC, RSB, STM(2), STRB, STRBT, SUB, SWI.

Even though they can be used alphanumerically, some of the
instructions have no or only limited use in the context of shell-
code: CDP, LDC, MCR and MRC all perform operations on copro-
cessors, however since we can not be sure which coprocessors will
be available on a specific platform, we discard these instructions.
The B/BL (branch) instruction is also of limited use to us in most
cases: the last 24 bits are used as an offset to the program counter
to calculate the destination of the jump. After making these bits
alphanumeric, the instruction would have to jump at least 12MB1

from the current location, far beyond the scope of our shellcode.
The remaining thirteen instructions can be categorized in groups

that contain instructions with the same basic functionality but that
only differ in the details. For instance, LDR loads a word from
memory into a register whereas LDRB loads a byte into the least
significant bytes of a register. Even though these are two different
instructions, they perform essentially the same operation.

We can distinguish the following seven categories:

• EOR Exclusive OR

• LDM (LDM(1), LDM(2)) Load multiple registers from a
consecutive memory locations

• LDR (LDR, LDRB, LDRBT, LDRT) Load value from mem-
ory into a register

• STM Store multiple registers to consecutive memory loca-
tions

• STRB (STRB, STRBT) Store a register to memory

• SUB (SUB, RSB) Subtract

• SWI Software Interrupt a.k.a. do a system call

Unfortunately, the instructions in the list above are not always
alphanumeric. Depending on which operands are used, these func-
tions may still generate non-alphanumeric characters. Hence, ad-
ditional constraints apply to each instruction. These constraints are
discussed further in the following subsections.

3.2 Registers
In alphanumeric shellcode, not all instructions that take registers

as operands can use any register for any operand. In particular,
none of the data-processing instructions can take registers r0 to
r2 and r8 to r15 as the destination register Rd. The reason is
that the destination register is encoded in the four most significant
bits of the third byte of an instruction. If these bits are set to the
value 0, 1 or 2, this would generate a byte that is too small to be
alphanumerical. If the bits are set to a value greater than 7, the
resulting byte will be too high.

If these registers cannot be set as the destination registers, this
essentially means that any calculated value cannot be copied into
one of these registers using the data-processing instructions. How-
ever, being able to set the contents of some of these registers is very
important. As explained in Section 2.2, ARM uses registers r0 to
r3 to transfer parameters to functions and system calls.

In addition, registers r4 and r6 can in some cases also generate
non-alphanumeric characters. The only registers that can be used
without restrictions are limited to r3, r5 and r7. This means that
we only have three registers that we can use freely throughout the
program.
1The branch instruction will first shift the 24 bit offset left twice
because all instructions start on a 4 byte boundary, this means that
the smallest possible value we can provide as offset: 0x303030 will
in fact be an offset of 12632256.
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3.3 Self-modifying code
ARM processors have an instruction cache, which makes writing

self-modifying code a hard thing to do since all the instructions that
are being executed will most likely already have been cached. The
Intel architecture has a specific requirement to be compatible with
self-modifying code, and as such will make sure that when code
is modified in memory the cache that possibly contains those in-
structions is invalidated. ARM has no such requirement, meaning
that the instructions that have been modified in memory could be
different from the instructions that are actually executed. Given the
size of the instruction cache and the proximity of the modified in-
structions, it is very hard to write self-modifying shellcode without
having to flush the instruction cache. We discuss how to do this in
section 4.7

3.4 Conditional execution
Because the condition code of an instruction is encoded in the

most significant bits of the first byte of the instruction (bits 31-28),
the value of the condition code has a direct impact on the alphanu-
meric properties of the instruction. As a result, only a limited set of
condition codes can be used in alphanumeric shellcode.

Unfortunately, the condition code AL, which specifies that an in-
struction should always be executed, cannot be used. This means
that all alphanumeric ARM instructions must be executed condi-
tionally. From the 15 possible condition codes, only five can be
used: CC (Carry clear), MI (Negative), PL (Positive), VS (Over-
flow) and VC (No overflow). This means that we can only execute
instructions if the correct condition codes are set and that the con-
ditions that can be used when attempting conditional control flow
are limited.

4. FILTER-RESISTANT SHELLCODE
In the previous sections, we’ve sketched some of the features

of the ARM processor, and some of the problems that arise when
writing alphanumeric shellcode. When the shellcode starts up, we
know nothing about the program state, we do not know the value
of any registers (including CPSR), the state of memory or anything
else. This presents us with a number of important challenges to
solve. This section will introduce a number of solutions for these
problems. In addition, this section will show how to use the limited
instructions that are available to simulate the operations of a much
richer instruction set.

4.1 Conditional execution
In our implementation, we’ve chosen the condition codes PL and

MI. Instructions marked with PLwill only be executed if the condi-
tion status is positive or zero. In contrast, MI instructions will only
be executed if the condition status is negative.

When our shellcode starts up, we can not be sure what state the
CPSR register is in. However, because PL and MI are mutually
exclusive, we can always ensure that an instruction gets executed
by simply adding the same instruction twice to the shellcode, once
with the PL suffix and once with the MI suffix.

Once we gain more knowledge about the program state, we can
execute an instruction that we know the result of, and mark it as an
instruction that must update the CPSR register. This can be done,
for example, by setting the S bit in a calculation with SUB or EOR.
Setting the S bit on either instruction will still allow them to be
represented alphanumerically.

4.2 Registers
When the processor starts executing the alphanumeric shellcode,

the contents of all the registers is unknown. However, in order to

do any useful calculations, the value of at least some registers must
be known. In addition, a solution must be found to set the contents
of registers r0 to r2. Without these registers, the shellcode will
not be able to do system calls or execute library functions.

Getting a constant in a register.
None of the traditional instructions are available to place a known

value in a register, making this a non-trivial problem. The MOV in-
struction cannot be used, because it is never alphanumeric. The
only data processing instructions that are available are EOR and
SUB, but these instructions can only be used in conjunction with ad-
dressing modes that use immediate values or involve shifting and
rotating. Because the result of a subtraction or exclusive OR be-
tween an unknown value and a known value is still unknown, these
instructions are not useful. Given that these are the only arithmetic
instructions that are supported in alphanumeric code, it is impossi-
ble to arithmetically get a known value into a register.

Fortunately, there is some knowledge about the running code that
can be exploited in order to get a constant value into a register. Even
though the exact value of the program counter, register r15, is
unknown, it will always point to the executing shellcode. Hence, by
using the program counter as an operand for the LDRB instruction,
one of the bytes of the shellcode can be loaded into a register. This
is done as follows:

SUBPL r3 , pc , #56
LDRPLB r3 , [ r3 , #−48]

pc cannot be used directly in an LDR instruction as this would
result in non-alphanumeric code. So its contents is copied to regis-
ter r3 by subtracting 56 from pc. The value 56 is chosen to make
the instruction alphanumeric. Then, register r3 is used in the LDRB
instruction to load a known byte from the shellcode into r3. The
immediate offset -48 is used to ensure that the LDRB instruction
is alphanumeric. Once this is done, r3 can be used to load other
values into other registers by subtracting an immediate value.

Loading values in arbitrary registers.
As explained in Section 3.2, it is not possible to use registers r0

to r2 as the destination registers of arithmetic operations. There is,
however, one operation that can be used to write to the three lowest
registers, without generating non-alphanumeric instructions. The
LDM instruction loads values from the stack into multiple registers.
It encodes the list of registers it needs to write to in the last two
bytes of the instruction. If bit n is set, register Rn is included in the
list and data is written to it. In order to get the bytes of the instruc-
tion to become alphanumeric, other registers have to be added to
the list.

That is, the following code

MOV r0 , r3
MOV r1 , r4
MOV r2 , r6

has to be transformed as following to be alphanumeric:

STMPLDB r5 , { r3 , r4 , r6 , r8 , r9 , l r }^
RSBPL r3 , r8 , #72
SUBPL r5 , r5 , r3 , ROR #2
LDMPLDA r5 ! , { r0 , r1 , r2 , r6 , r9 , l r }

In the example above, the registers r3, r4 and r6 are stored on
the stack using the STM instruction and then read from the stack
into registers r0, r1, r2 using the LDM instruction. In order to
make the STM instruction alphanumeric, the dummy registers r8,
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r9 and lr are added to the list, which will write them to the stack.
Similarly the LDM instruction adds r6, r9 and lr. This will re-
place the value of r6 with the value of r8. The caret symbol is
also necessary to make the instruction alphanumerical. This sym-
bol sets a bit that is only used if the processor is executing in privi-
leged mode. In unprivileged mode, the bit is ignored.

The decrement before addressing mode that is used for the STM
instruction results in an invalid bit pattern when used in conjunc-
tion with LDM. Hence, we use a different addressing mode for the
STM instruction. This requires, however, that we modify the start-
ing address slightly for it to work as expected, which we do by
subtracting 4 from r5 using the RSB and SUB instructions above.

4.3 Arithmetic operations
The ADD instruction is not alphanumeric, so it must be simu-

lated using other instructions. After generating a negative number
by subtracting from our known value, an addition can be performed
by subtracting that negative value from another register. However,
one caveat is that when the SUB instruction is used with two regis-
ters as operands, an additional rotate right (ROR) on the second op-
erand must be done in order to make the bytes alphanumeric. This
effect can be countered by either rotating the second operand with
an immediate value that will result in a (different) known value,
or by rotating the second operand with a register that contains the
value 0.

SUBPL r7 , r3 , #57
SUBPL r3 , r3 , #56
SUBPL r5 , r5 , r7 ROR r3

If we assume that register r3 contains the value 56, using the
trick explained in Section 4.2, the code above starts by setting reg-
ister r7 to -1 and sets register r3 to 0. One is added to the value
in register r5 by subtracting the value -1 from it and rotating this
value by 0 bits.

Subtract works in a similar fashion except a positive value is used
as argument.

SUBPL r7 , r3 , #55
SUBPL r3 , r3 , #56
SUBPL r5 , r5 , r7 ROR r3

The above examples show the +1 and −1 operations respec-
tively. While these would be enough to calculate arbitrary values
given enough applications, it is possible to use larger values by set-
ting r7 to a larger positive or negative value. However, for even
larger values it is also possible to set r3 to a nonzero value. For
example, if r3 is set to 20, then the last instruction will not subtract
one, but will instead subtract 4096.

As can be seen from the example above, we can also subtract
and add registers to and from each other (for addition, we of course
need to subtract the register from 0 first).

Multiplication and division follow from repeated application of
addition and subtraction.

4.4 Bitwise operations
This section discusses the different bitwise operations.

4.4.1 Rotating and shifting
Instructions on ARM that use the arithmetic addressing mode,

explained in Section 2.2.2, can perform all kinds of shifts and rota-
tions on the last operand prior to using it in a calculation. However,
not all variants can be used in alphanumeric instructions. In partic-
ular, none of the left shift and left rotate variants can be used. Of
course, left shifting can be emulated by multiplying by a power of
2, and left rotates can be emulated with right rotates.

4.4.2 Exclusive OR
The representation of the Exclusive OR (EOR) instruction is al-

phanumeric and is thus one of the instructions that can be used in
our shellcode. However the same restrictions apply as for subtract.

4.4.3 Complement
By applying an Exclusive OR with the value -1 we can achieve

a NOT operation.

4.4.4 Conjunction and disjunction
Conjunction can be emulated as follows: for every bit of the

two registers being conjoined, first shift both registers left2 by 31
minus the location of the current bit, then shift the results to the
right so the current bit becomes the least significant bit. We can
now multiply the registers. We have now performed an AND over
those bits. Shifting the result left by the amount of bits we shifted
right will place the bit in the correct location. We can now add this
result to the register that will contain the final result (this register
is initialized to 0 before performing the AND operation). This is a
rather complex operation, which turns out not to be necessary for
proving Turing completeness or for implementing shell-spawning
shellcode, but it can be useful if an attacker must perform an AND
operation.

Given this implementation of AND and the previously discussed
NOT operation, OR follows from the application of De Morgan’s
law.

4.5 Memory access
Arbitrary values can be read from memory by using the LDR or

LDRB instruction with a register which points 48 bytes further than
the memory we wish to access:

LDRPL r5 , [ r3 , #−48]!
LDRPLB r3 , [ r3 , #−48]

The first instruction will load the four bytes stored at memory
location r3 minus 48 into r5. The offset calculation is written
back into r3 in order to make the instruction alphanumeric. The
second instruction will load the byte pointed to by r3 minus 48
into r3.

Storing bytes to memory can be done with the STRB instruction:

STRPLB r5 , [ r3 , #−48]

In the above example, STRB will store the least significant byte
of r5 at the memory location pointed to by r3 minus 48.

The STR instruction cannot be used alphanumerically. An alter-
native to using STR is to use the STM instruction, which stores mul-
tiple registers to memory. This instruction stores the full contents
of the registers to memory, but it cannot be used to store a single
register to memory, as this would result in non-alphanumeric code.

Another possibility to store the entire register to memory is to
use multiple STRB instructions and use the shift right capability
that was discussed earlier to get each byte into the correct location

MOV r5 , #0
MOV r3 , #16
SUBPL r3 , r5 , r7 , ROR r3
SUBPL r3 , r5 , r3 , ROR r5
STRPLB r3 , [ r13 , #−50]
MOV r3 , #24
SUBPL r3 , r5 , r7 , ROR r3
SUBPL r3 , r5 , r3 , ROR r5

2Left shifting is done by multiplying by the correct power of 2, as
discussed in 4.4.1.
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STRPLB r3 , [ r13 , #−49]

The code above shows how to store the 2 most significant bytes
of r73 to r13 minus 49 and r13 minus 50 respectively.

4.6 Control flow
This section discussed unconditional and conditional branches.

4.6.1 Unconditional branches
As discussed in Section 3.1, the branch instruction requires a 24

bit offset from pc as argument, which is shifted two bits to the left
and sign extended to a 32 bit value. The smallest alphanumeric
offset that can be provided to branch corresponds to an offset of
12MB. In the context of shellcode, this offset is clearly not very
useful. Instead, we will use self-modifying code to rewrite the ar-
gument to the branch before reaching this branching instruction.
This is done by calculating each byte of the argument separately
and using STRB with an offset to pc to overwrite the correct in-
struction.

SUBPL r3 , pc , #48
SUBPL r5 , r8 , #56
SUBPL r7 , r8 , #108
SUBPL r3 , r3 , r7 , ROR r5
SUBPL r3 , r3 , r7 , ROR r5
SUBPL r3 , r3 , r7 , ROR r5

SUBPL r7 , r8 , #54
STRPLB r7 , [ r3 , #−48]

. b y t e 0x30 , 0 x30 , 0 x30 , 0 x90

The above code copies pc minus 48 to r3 and sets r5 to 0 (we
assume r8 contains 56). It then sets r7 to -52, subtracts this 3
times from r3. This will result in r3 containing the value pc plus
108. When we subsequently write the value r7 to r3 minus 48 we
will in effect be writing to pc plus 60. Using this technique we can
rewrite the arguments to the branch instruction (0x30 in the above
example).

This must be done for every branch in the program before the
branch is reached. However as discussed in section 3.3 we can’t
simply write self-modifying code for ARM due to the instruction
cache: this cache will prevent the processor from seeing our modi-
fications. In section 4.7 we discuss how we were still able to flush
the cache to allow our self-modifications to be seen by the proces-
sor once all branches have been rewritten.

4.6.2 Conditional branches
In order to restrict the different types of instructions that should

be rewritten, compare instructions and the corresponding condi-
tional branch are replaced with a sequence of two branches that use
only the PL and MI condition codes. Some additional instructions
must be added to simulate the conditional behavior that is expected.

As an example, imagine we want to execute the following in-
structions which will branch to the endinter label if r5 is equal
to 0:

CMP r5 , #0
BEQ e n d i n t e r

These two instructions can be rewritten as (r8 contains 56):

SUBPL r3 , r8 , #52
3The code is slightly simplified for better readability in that we use
MOV, which is not alphanumeric, to load the values to r3 and r5

SUBPLS r3 , r5 , r3 , ROR #2
BPL n o t n u l l
SUBMI r5 , r8 , #57
SUBMIS r7 , r8 , #56
SUBPLS r5 , r3 , r5 , ROR #2
BPL e n d i n t e r
SUBMIS r7 , r8 , #56
n o t n u l l :

By observing whether the processor changes condition state af-
ter subtracting and adding one to the original value, we can deduce
whether the original value was equal to zero or not. If we subtract
one, and the state of the processor remains positive, the value must
be greater than zero. If the processor changes state, the value was
either zero or a negative number. By adding one again, and verify-
ing that the processor state changes to positive again, we can ensure
that the original value was indeed zero.

As with the unconditional branch, the actual branching instruc-
tion is not available in alphanumeric code, so again we must over-
write the actual branch instruction in the code above.

4.7 System calls
As described in Section 3.3, the instruction cache of the ARM

processor will hamper self-modifying code. One way of ensuring
that this cache can be bypassed, is by turning it off programmati-
cally. This can be done by using the alphanumeric MRC instruction,
and specifying the correct operand that turns the cache off. How-
ever, as this instruction is privileged before ARMv6, we will not
use this approach in our shellcode.

Another option is to execute a system call that flushes the cache.
This can be done using the SWI instruction, given the correct oper-
and. The first byte of a SWI instruction encodes the condition code
and the opcode of the instruction. The other three bytes encode the
number of the system call that needs to be executed. Fortunately,
the first byte can be made alphanumeric by choosing the MI condi-
tion code for the SWI instruction.

On ARM/Linux, the system call for a cache flush is 0x9F0002.
None of these bytes are alphanumeric and since they are issued as
part of an instruction this could mean that they cannot be rewritten
with self-modifying code. However, SWI generates a software in-
terrupt and to the interrupt handler 0x9F0002 is actually data. As
a result, it will not be read via the instruction cache, so any modi-
fications made to it prior to the SWI call will be reflected correctly,
since these modifications will have been done via the data cache
(any write or read to/from memory goes via the data cache, only
instruction execution goes via the instruction cache).

In non-alphanumeric code, the instruction cache would be flushed
with this sequence of operations:

MOV r0 , #0
MOV r1 , #−1
MOV r2 , #0
SWI 0 x9F0002

Since these instructions generate a number of non-alphanumeric
characters, the previously mentioned code techniques will have to
be applied to make this alphanumeric (i.e., writing to r0 to r2
via LDM and STM and rewriting the argument to SWI via self-
modifying code). Given that the SWI instruction’s argument is seen
as data, overwriting the argument can be done via self-modification.
If we also overwrite all the branches in the program prior to per-
forming the SWI, then all self-modified code will now be seen cor-
rectly by the processor and our program can continue.
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4.8 Thumb mode
Although the Thumb instruction set is not used to prove that al-

phanumeric ARM code is Turing complete, it might nevertheless
be interesting to know that it is possible to switch between the two
modes in an alphanumeric way.

Entering Thumb mode.
Changing the processor state from ARM mode to Thumb mode

is done by calling the branch and exchange instruction BX. ARM
instructions are always exactly four bytes and Thumb instructions
are exactly two bytes. Hence, all instructions are aligned on either
a two or four byte alignment. Consequently, the least-significant
bit of a code address will never be set in either mode. It is this bit
that is used to indicate to which mode the processor must switch.

If the least significant bit of a code address is set, the processor
will switch to Thumb mode, clear the bit and jump to the resulting
address. If the bit is not set, the processor will switch to ARM
mode. Below is an example that switches the processor from ARM
to Thumb state.

SUBPL r6 , pc , #−1
BX r6
<Thumb i n s t r u c t i o n s >

In ARM mode, pc points to the address of the current instruction
plus 8. The BX instruction is not alphanumeric, so it must be over-
written in order to execute the correct instruction. The techniques
presented in Section 4.7 can be used to accomplish this.

Exiting Thumb mode.
If the program that is being exploited is running in Thumb mode

when the vulnerability is triggered, the attacker can either choose
to continue with shellcode that uses Thumb instructions, or he can
switch to ARM mode. The SWI instruction is not alphanumeric
in Thumb mode, making self-modifying code impossible with only
Thumb instructions. The alternative is to switch to ARM mode,
where system calls can be performed.

BX pc
ADD r7 , #50
<ARM i n s t r u c t i o n s >

In Thumb mode, pc points to the address of the current instruc-
tion, plus 4. Since Thumb instructions are 2 bytes long, we must
add a dummy instruction after the BX instruction. Also note that a
dummy instruction before BXmight be necessary in order to correct
the Thumb alignment to ARM alignment.

5. TURING COMPLETENESS
In this section we argue that with our alphanumeric ARM shell-

code we are able to perform all useful computations. We are going
to show that the shellcode is Turing complete. Our argument runs
as follows: we take a known Turing-complete programming lan-
guage and build an interpreter for this language in alphanumeric
shellcode.

The language of choice is BrainF*ck (BF) [26], which has been
proven to be Turing complete [24]. BF is a very simple language
that mimics the behavior of a Turing machine. It assumes that it has
access to unlimited memory, and that the memory is initialized to
zero at program start. It also has a pointer into this memory, which
we call the memory pointer. The language supports 8 different op-
erations, each symbolized by a single character. Table 5 describes
the meaning of each character that is part of the BF alphabet and
gives the equivalent meaning in C (assuming that p is the memory
pointer of type char*).

Table 1: The BF language

BF Meaning C equivalent
> increases the memory pointer to point to

the next memory location.
p++;

< decreases the memory pointer to point to
the previous memory location.

p--;

+ increases the value of the memory loca-
tion that the memory pointer is pointing
to by one.

(*p)++;

- decreases the value of the memory loca-
tion that the memory pointer is pointing
to by one.

(*p)--;

. write the memory location that the
memory pointer is pointing to stdout.

write(1, p, 1);

, read from stdin and store the value in
the memory location that the pointer is
pointing to.

read(0, p, 1);

[ starts a loop if the memory pointed to
by the memory pointer is not 0. If it is
0, execution continues after the match-
ing ] (the loop operator allows for nested
loops).

while (*p) {

] continue the loop if the memory pointed
to by the memory pointer is not 0, if it is
0, execution continues after the ].

if (!*p) break; }

We implemented a mapping of BF to alphanumeric shellcode as
an interpreter written in alphanumeric ARM shellcode. The inter-
preter takes as input any BF program and simulates the behavior of
this program. The details of the interpreter are discussed below.

Several issues had to be addressed in our implementation.

• Because we wanted the BF program that must be executed
to be part of the interpreter shellcode, we remapped all BF
operations to alphanumeric characters: > ... ] are mapped to
the characters J ... C respectively.

• We extended the BF language (since this is a superset of
BF, it is still Turing complete), with a character to do pro-
gram termination. We use the character “B” for this purpose.
While this is not necessary to show Turing completeness,
having a termination character simplifies our implementa-
tion.

• As with BF we assume that we have unlimited memory, our
implementation provides for an initial memory area of 1024
bytes but this can be increased as needed.

• The memory required by our interpreter to run the BF pro-
gram is initialized to 0 at startup of the interpreter.

5.1 Initialization
To support the BF language, we use three areas of memory: one

which contains the code of the BF programming (we will refer to
this as the BF-code area) that we are executing, a second which
serves as the memory of the program (the BF-memory area), and
a third which we use as a stack to support nested loops (the loop-
memory area). Memory for these areas is assumed to be part of the
shellcode and each area is assumed to be 1024 bytes large.

We store pointers to each of these memory areas in registers r10,
r9 and r11 respectively. These pointers are calculated by sub-
tracting from the pc register. Once these registers are initialized,
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the contents of BF-memory is initialized to 0. Since it’s part of our
shellcode, the BF-memory contains only alphanumeric characters
by default. The memory is cleared by looping (using a conditional
branch) over the value of r9 and setting each memory location to
0 until it reaches the end of the buffer. The memory size can be
increased by adding more bytes to the BF-memory region in the
shellcode, and by making minor modifications to the initialization
of the registers r9 to r11.

5.2 Parsing
Parsing the BF program is done by taking the current character

and executing the expected behavior. To simplify the transition of
the control flow from the code that is interpreting each BF code
character to the actual implementation of the function, we use a
jump table. The implementation of every BF operation is assumed
to start 256 bytes from the other. By subtracting ‘A’ from the char-
acter we are interpreting and then subtracting that number multi-
plied by 256 from the program counter, we generate the address
that contains the start of the implementation of that operation. To
be able to end the program correctly we need the program termi-
nation character that was added to the BF language earlier (“B”).
Because the implementation of a BF operation must be exactly 256
bytes, the actual implementation code is padded with dummy in-
structions.

5.3 BF Operations
The first four BF operations: “>”,“<”,“+” and “-” (or “J”, “I”,

“H”, “G”) are easily implemented using the code discussed in Sec-
tion 4. The instructions for “.” and “,” (“F” and “E”) are sys-
tem calls to respectively read and write. As was discussed in Sec-
tion 4.7, we need to rewrite the argument of the SWI instruction to
correspond with the arguments for read and write (0x00900004
and 0x00900003), which can not be represented alphanumeri-
cally.

Loops in BF work in the following way: everything between “[”
and “]” is executed repeatedly until the contents of the memory that
the memory pointer is pointing to is equal to 0 when reaching either
character. This scheme allows for nested loops. To implement these
nested loops, we store the current pointer to the BF-code memory
(contained in register r10) in the loop-memory area. Register r11
acts as a stack pointer into this area. When a new loop is started,
r11 will point to the top of the stack. When we reach “]”, we
compare the memory pointed to by the memory pointer to 0. If the
loop continues, a recursive function call is made to the interpreted
function. If the result was in fact 0, then the loop has ended and
we can remove the top value of the loop-memory by modifying the
r11 register.

5.4 Branches and system calls
As discussed in Section 4.6.1, we can not use branches directly:

the argument for the branch instruction is a 24 bit offset from PC.
Instead of overwriting the argument, however, we chose to instead
calculate the address we would need to jump to and store the result
in a register. We then insert a dummy instruction that will later be
overwritten with the BX <register> instruction. Each possible
branch instruction is fixed up in this way: at the end of a BF opera-
tion when we must jump to the end of the function, for the branches
used to implement the loop instructions, . . .

As discussed in Section 4.7, the arguments to system calls also
need to be overwritten. This is also done by our self-modifying
code.

All this self-modification is done right after the shellcode has

started executing. Once we have overwritten all necessary memory
locations, a cache flush is performed, which ensures that the new
instructions will be read correctly when the processor reaches them.

6. RELATED WORK
Building regular shellcode for ARM exists for both Linux [19]

and Windows [20]. To facilitate NULL-byte avoidance, self-modi-
fication is also discussed in [19]. However, because only the argu-
ments to SWI are modified, no cache flush is needed in this case,
simplifying the shellcode considerably.

Alphanumeric shellcode exists for Intel architectures [33]. Due
to the variable length instructions used on this architecture, it is
easier to achieve alphanumeric shellcode because many more in-
structions can be used compared to ARM architectures (jumps, for
instance, are no problem), and the code is also not cached. Eller
[16] discusses an encoder that will encode instructions as ASCII
characters, that when executed on an Intel processor will decode
the original instructions and execute them.

In Shacham [36] and Buchanan [11], the authors describe how
to use the instructions provided by libc on both Intel and RISC
architectures to perform return-into-libc attacks that are also Turing
complete. By returning to a memory location which performs the
desired instruction and subsequently executes a return, attackers
can string together a number of return-into-libc attacks which can
execute arbitrary code. The addresses returned to in that approach,
however, may not be alphanumeric, which can result in problems
when confronted with filters that prevent the use of any type of
value.

7. CONCLUSION
In this paper we discussed how an attacker can use purely al-

phanumeric characters to insert shellcode into the memory space
of an application running on a RISC processor. Given the fact that
all instructions on a 32-bit RISC architecture are 4 bytes large, this
turns out to be a non-trivial task: only 0.34% of the 32 bit words
consist of 4 alphanumeric characters. However, we show that even
with these severe constraints, it is possible to build an interpreter
for a Turing complete language, showing that this alphanumeric
shellcode is Turing complete. While the fact that the alphanumeric
shellcode is Turing complete means that any program written in
another Turing complete language can be represented in alphanu-
meric shellcode, an attacker may opt to simplify the task of writing
alphanumeric shellcode in ARM by building a stager in alphanu-
meric shellcode that decodes the real payload, which can then be
written non-alphanumerically.

In [47], we present real-world alphanumeric ARM shellcode that
executes a pre-existing executable, demonstrating the practical ap-
plicability of the shellcode.

Using alphanumeric shellcode, an attacker can bypass filters that
filter out non-alphanumeric characters, while still being able to in-
ject code that can perform arbitrary operations. It may also help an
attacker in evading intrusion detection systems that try to detect the
existence of shellcode in input coming from the network.
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