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Abstract

Memory managers are an important part of any modern language: they are used to dynamically allocate memory
for use in the program. Many managers exist and depending on the operating system and language. However, two
major types of managers can be identified: manual memory allocators and garbage collectors. In the case of manual
memory allocators, the programmer must manually release memory back to the system when it is no longer needed.
Problems can occur when a programmer forgets to release it (memory leaks), releases it twice or keeps using freed
memory. These problems are solved in garbage collectors. However, both manual memory allocators and garbage
collectors store management information for the memory they manage. Often, this management information is stored
where a buffer overflow could allow an attacker to overwrite this information, providing a reliable way to achieve
code execution when exploiting these vulnerabilities. In this paper we describe several vulnerabilities for C and C++
and how these could be exploited by modifying the management information of a representative manual memory
allocator and a garbage collector.

Afterwards, we present an approach that, when applied to memory managers, will protect against these attack
vectors. We implemented our approach by modifying an existing widely used memory allocator. Benchmarks show
that this implementation has a negligible, sometimes even beneficial, impact on performance.

1 Introduction

Security has become an important concern for all computer users. Worms and hackers are a part of every day internet
life. A particularly dangerous attack is the code injection attack, where attackers are able to insert code into the
program’s address space and can subsequently execute it. Programs written in C are particularly vulnerable to such
attacks. Attackers can use a range of vulnerabilities to inject code. The most well known and most exploited is of
course the standard buffer overflow: attackers write past the boundaries of a stack-based buffer and overwrite the return
address of a function and point it to their injected code. When the function subsequently returns, the code injected by
the attackers is executed [2].

These are not the only kind of code injection attacks though: a buffer overflow can also exist on the heap, allowing
an attacker to overwrite heap-stored data. As pointers are not always available in normal heap-allocated memory,
attackers often overwrite the management information that the memory manager relies upon to function correctly. A
double free vulnerability, where a particular part of heap-allocated memory is deallocated twice could also be used by
an attacker to inject code.

Many countermeasures have been devised that try to prevent code injection attacks [58]. However most have
focused on preventing stack-based buffer overflows and only few have concentrated on protecting the heap or memory
allocators from attack.

In this paper we evaluate a commonly used memory allocator and a garbage collector for C and C++ with respect
to their resilience against code injection attacks and present a significant improvement for memory managers in order
to increase robustness against code injection attacks. Our prototype implementation (which we call dnmalloc) comes
at a very modest cost in both performance and memory usage overhead.

This paper is an extended version of work described in [59] which was presented in December 2006 at the Eighth
International Conference on Information and Communication Security. The paper is structured as follows: section 2
explains which vulnerabilities can exist for heap-allocated memory. Section 3 describes how both a popular memory
allocator and a garbage collector can be exploited by an attacker using one of the vulnerabilities of section 2 to perform
code injection attacks. Section 4 describes our new more robust approach to handling the management information



associated with chunks of memory. Section 5 contains the results of tests in which we compare our memory allocator
to the original allocator in terms of performance overhead and memory usage. In section 6 related work in improving
security for memory allocators is discussed. Finally, section 7 discusses possible future enhancements and presents
our conclusion.

2 Heap-based vulnerabilities for code injection attacks

There are a number of vulnerabilities that occur frequently and as such have become a favorite for attackers to use to
perform code injection. We will examine how different memory allocators might be misused by using one of three

common vulnerabilities: “heap-based buffer overflows”, “off by one errors” and “dangling pointer references”. In this
section we will describe what these vulnerabilities are and how they could lead to a code injection attack.

2.1 Heap-based buffer overflow

Heap memory is dynamically allocated at run-time by the application. Buffer overflow, which are usually exploited
on the stack, are also possible in this kind of memory. Exploitation of such heap-based buffer overflows usually relies
on finding either function pointers or by performing an indirect pointer attack [17] on data pointers in this memory
area. However, these pointers are not always present in the data stored by the program in this memory. As such,
most attackers overwrite the memory management information that the memory allocator stores in or around memory
chunks it manages. By modifying this information, attackers can perform an indirect pointer overwrite. This allows
attackers to overwrite arbitrary memory locations, which could lead to a code injection attack [4,56]. In the following
sections we will describe how an attacker could use specific memory managers to perform this kind of attack.

2.2 Off by one errors

An off by one error is a special case of the buffer overflow. When an off by one occurs, the adjacent memory location
is overwritten by exactly one byte. This often happens when a programmer loops through an array but typically ends at
the array’s size rather than stopping at the preceding element (because arrays start at 0). In some cases these errors can
also be exploitable by an attacker [4,56]. A more generally exploitable version of the off by one for memory allocators
is an off by five, while these do not occur as often in the wild, they demonstrate that it is possible to cause a code
injection attack when little memory is available. These errors are usually only exploitable on little endian machines
because the least significant byte of an integer is stored before the most significant byte in memory.

2.3 Dangling pointer references

Dangling pointers are pointers to memory locations that are no longer allocated. In most cases dereferencing a dangling
pointer will lead to a program crash. However in heap memory, it could also lead to a double free vulnerability, where
a memory location is freed twice. Such a double free vulnerability could be misused by an attacker to modify the
management information associated with a memory chunk and as a result could lead to a code injection attack [22].
This kind of vulnerability is not present in all memory managers, as some will check if a chunk is free or not before
freeing it a second time. It may also be possible to write to memory which has already been reused, while the program
think it is still writing to the original object. This can also lead to vulnerabilities. These last kind of vulnerabilities
are, however, much harder to exploit in general programs than a double free. The possibility of exploiting these
vulnerabilities will most likely rely on the way the program uses the memory rather than by using the memory manager
to the attacker’s advantage.

In the following sections we will describe a specific memory allocator could be exploited using dangling pointer
references and more specifically, double free vulnerabilities. More information about these attacks can be found
in [22,56,60].



3 Memory managers

In this section we will examine a representative memory allocator and a garbage collector for C and C++. We have
chosen Doug Lea’s memory allocator on which the Linux memory allocator is based, because this allocator is in wide
use and illustrates typical vulnerabilities that are encountered in other memory allocators. A discussion of how other
memory allocators can be exploited by attackers can be found in [60]. Boehm’s garbage collector was chosen to
determine whether a representative garbage collecting memory manager for C/C++ would be more resilient against
attack.

We will describe how these memory managers work in normal circumstances and then will explain how a heap-
vulnerability that can overwrite the management information of these memory managers could be used by an attacker
to cause a code injection attack. We will use the same structure to describe both memory managers: first we describe
how the manager works and afterwards we examine if and how an attacker could exploit it to perform code injection
attacks (given one of the aforementioned vulnerabilities exists).

3.1 Doug Lea’s memory allocator

Doug Lea’s memory allocator [39,40] (commonly referred to as dimalloc) was designed as a general-purpose memory
allocator that could be used by any kind of program. DIlmalloc is used as the basis for ptmalloc [24], which is the
allocator used in the GNU/Linux operating system. Ptmalloc mainly differs from dlmalloc in that it offers better
support for multithreading, however this has no direct impact on the way an attacker can abuse the memory allocator’s
management information to perform code injection attacks. The description of dlmalloc in this section is based on
version 2.7.2.

3.1.1 Description

The memory allocator divides the heap memory at its disposal into contiguous chunks', which vary in size as the
various allocation routines (malloc, free, realloc, ...) are called. An invariant is that a free chunk never borders
another free chunk when one of these routines has completed: if two free chunks had bordered, they would have
been coalesced into one larger free chunk. These free chunks are kept in a doubly linked list, sorted by size. When
the memory allocator at a later time requests a chunk of the same size as one of these free chunks, the first chunk
of appropriate size will be removed from the list and made available for use in the program (i.e. it will turn into an
allocated chunk).

Chunk structure Memory management information associated with a chunk is stored in-band. Figure 1 illustrates
what a heap of used and unused chunks could look like. Chunkl! is an allocated chunk containing information about
the size of the chunk stored before it and its own size?. The rest of the chunk is available for the program to write
data in. Chunk3 is a free chunk that is allocated adjacent to chunkl. Chunk2 and chunk4 are free chunks located in
arbitrary locations on the heap.

Chunk3 is located in a doubly linked list together with chunk2 and chunk4. Chunk?2 is the first chunk in the chain:
its forward pointer points to chunk3 and its backward pointer points to a previous chunk in the list. Chunk3’s forward
pointer points to chunk4 and its backward pointer points to chunk2. Chunk4 is the last chunk in our example: its
forward pointer points to a next chunk in the list and its backward pointer points to chunk3.

3.1.2 Exploitation

Dlmalloc is vulnerable to all three of the previously described vulnerabilities [4,22,31,48]. Here we will describe how
these vulnerabilities may lead to a code injection attack.

A chunk is a block of memory that is allocated by the allocator, it can be larger than what a programmer requested because it usually reserves
space for management information.

2The size of allocated chunks is always a multiple of eight, so the three least significant bits of the size field are used for management information:
a bit to indicate if the previous chunk is in use (P) or not and one to indicate if the memory is mapped or not (M). The third bit is currently unused.
The “previous chunk in use”-bit can be modified by an attacker to force coalescing of chunks. How this coalescing can be abused is explained later.
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Figure 1: Heap containing used and free chunks

Overwriting memory management information Figure 2 shows what could happen if an array that is located in
chunkl is overflowed: an attacker has overwritten the management information of chunk3. The size fields are left
unchanged (although these could be modified if needed). The forward pointer has been changed to point to 12 bytes
before the return address and the backward pointer has been changed to point to code that will jump over the next few
bytes. When chunkl is subsequently freed, it will be coalesced together with chunk3 into a larger chunk. As chunk3
will no longer be a separate chunk after the coalescing it must first be removed from the list of free chunks.

The unlink macro takes care of this: internally a free chunk is represented by a struct containing the following
unsigned long integer fields (in this order): prev_size, size, fd and bk. A chunk is unlinked as follows:

chunk2—>fd—>bk = chunk2-—>bk
chunk2 —>bk—>fd chunk2—fd

Which is the same as (based on the struct used to represent malloc chunks):

*(chunk2—>fd+12) = chunk2—>bk
*(chunk2—>bk+8) = chunk2—fd

As a result, the value of the memory location that is twelve bytes after the location that fd points to will be
overwritten with the value of bk, and the value of the memory location eight bytes after the location that bk points
to will be overwritten with the value of fd. So in the example in Figure 2, the return address would be overwritten
with a pointer to injected code. However, since the eight bytes after the memory that bk points to will be overwritten
with a pointer to fd (illustrated as dummy in Figure 2), the attacker needs to insert code to jump over the first twelve
bytes into the first eight bytes of his injected code. Using this technique an attacker could overwrite arbitrary memory
locations [4,31,438].

Off by one error An off by one error could also be exploited in the Doug Lea’s memory allocator [4]. If the chunk
is located immediately next to the next chunk (i.e. not padded to be a multiple of eight), then an off by one can be
exploited: if the chunk is in use, the prev_size field of the next chunk will be used for data and by writing a single
byte out of the bounds of the chunk, the least significant byte of the size field of the next chunk will be overwritten.
As the least significant byte contains the prev_inuse bit, the attacker can make the allocator think the chunk is free and
will coalesce it when the second chunk is freed. Figure 3 depicts the exploit: the attacker creates a fake chunk in the
chunkl and sets the prev_size field accordingly and overwrites the least significant byte of chunk2’s size field to mark
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Figure 2: Heap-based buffer overflow in dlmalloc

the current chunk as free. The same technique using the forward and backward pointers (in the fake chunk) that was
used in section 3.1.2 can now be used to overwrite arbitrary memory locations.

Double free DImalloc can be used for a code injection attack if a double free exists in the program [22]. Figure 4
illustrates what happens when a double free occurs. The full lines in this figure are an example of what the list of free
chunks of memory might look like when using this allocator.

Chunkl is larger than chunk2 and chunk3 (which are both the same size), meaning that chunk?2 is the first chunk in
the list of free chunks of equal size. When a new chunk of the same size as chunk? is freed, it is placed at the beginning
of this list of chunks of the same size by modifying the backward pointer of chunkl and the forward pointer of chunk2.

When a chunk is freed twice it will overwrite the forward and backward pointers and could allow an attacker to
overwrite arbitrary memory locations at some later point in the program. As mentioned in the previous section: if a
new chunk of the same size as chunk? is freed it will be placed before chunk?2 in the list. The following pseudo code
demonstrates this (modified from the original version found in dlmalloc):

BK = front_of_list_of_same_size_chunks
FD = BK—FD

new_chunk—>bk = BK

new_chunk—>fd = FD

FD—>bk = BK—>fd

new_chunk

The backward pointer of new_chunk is set to point to chunk2, the forward pointer of this backward pointer (i.e.
chunk2—>fd = chunkl) will be set as the forward pointer for new_chunk. The backward pointer of the forward pointer
(i.e. chunkl—>bk) will be set to new_chunk and the forward pointer of the backward pointer (chunk2—>fd) will be
set to new_chunk.

If chunk2 would be freed twice in succession, the following would happen (substitutions made on the code listed
above):

BK = chunk2

FD = chunk2—>fd
chunk2—>bk = chunk?2
chunk2—>fd = chunk2—>fd

chunk2—>fd—>bk

chunk?2

chunk2—fd
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The forward and backward pointers of chunk2 both point to itself. The dotted lines in Figure 4 illustrate what the
list of free chunks looks like after a second free of chunk?2.

chunk2—>fd—>bk chunk2—>bk
chunk2—>bk—>fd chunk2—>fd

But since both chunk2—>fd and chunk2—>bk point to chunk2, it will again point to itself and will not really be
unlinked. However the allocator assumes it has and the program is now free to use the user data part (everything below
’size of chunk’ in Figure 4) of the chunk for its own use.

Attackers can now use the same technique that we previously discussed to exploit the heap-based overflow (see
Figure 2): they set the forward pointer to point 12 bytes before the return address and change the value of the backward
pointer to point to code that will jump over the bytes that will be overwritten. When the program tries to allocate a
chunk of the same size again, it will again try to unlink chunk2, which will overwrite the return address with the value
of chunk2’s backward pointer.

3.2 Boehm garbage collector

The Boehm garbage collector [14—16] is a conservative garbage collector * for C and C++ that can be used instead of
malloc or new. Programmers can request memory without having to explicitly free it when they no longer need it. The
garbage collector will automatically release memory to the system when it is no longer needed. If the programmer does
not interfere with memory that is managed by the garbage collector (explicit deallocation is still possible), dangling
pointer references are made impossible.

3.2.1 Description

Memory is allocated by the programmer by a call to GC_malloc with a request for a number of bytes to allocate. The
programmer can also explicitly free memory using GC_free or can resize the chunk by using GC_realloc, these two
calls could however lead to dangling pointer references.

Memory structure The collector makes a difference between large and small chunks. Large chunks are larger than
half of the value of HBLKSIZE®. These large chunks are rounded up to the next multiple of HBLKSIZE and allocated.
When a small chunk is requested and none are free, the allocator will request HBLKSIZE memory from the system
and divide it in small chunks of the requested size.

There is no special structure for an allocated chunk, it only contains data. A free chunk contains a pointer at the
beginning of the chunk that points to the next free chunk to form a linked list of free chunks of a particular size.

Collection modes The garbage collector has two modes: incremental and non-incremental modes. In incremental
mode, the heap will be increased in size whenever insufficient space is available to fulfill an allocation request. Garbage
collection only starts when a certain threshold of heap size is reached. In non-incremental mode whenever a memory
allocation would fail without resizing the heap the garbage collector decides (based on a threshold value) whether or
not to start collecting.

Collection Collection is done using a mark and sweep algorithm. This algorithm works in three steps. First all
objects are marked as being unreachable (i.e. candidates to be freed). The allocator then starts at the roots (registers,
stack, static data) and iterates over every pointer that is reachable starting from one of these objects. When an object
is reachable it is marked accordingly. Afterwards the removal phase starts: large unreachable chunks are placed in a
linked list and large adjacent chunks are coalesced. Pages containing small chunks are also examined: if all of the
chunks on the page are unreachable, the entire page is placed in the list of large chunks. If it is not free, the small
chunks are placed in a linked list of small chunks of the same size.

3 A conservative collector assumes that each memory location is a pointer to another object if it contains a value that is equal to the address of an
allocated chunk of memory. This can result in false negatives where some memory is incorrectly identified as still being allocated.
4HBLKSIZE is equal to page size on TA32.



3.2.2 Exploitation

Although the garbage collector removes vulnerabilities like dangling pointer references, it is still vulnerable to buffer
overflows. It is also vulnerable to a double free vulnerability if the programmer explicitly frees memory.

Overwriting memory management information During the removal phase, objects are placed in a linked list of
free chunks of the same size that is stored at the start of the chunk. If attackers can write out of the boundaries of
a chunk, they can overwrite the pointer to the next chunk in the linked list and make it refer to the target memory
location. When the allocator tries to reallocate a chunk of the same size it will return the memory location as a chunk
and as a result will allow the attacker to overwrite the target memory location.

Off by five The garbage collector will automatically add padding to an object to ensure that the property of C/C++
which allows a pointer to point to one element past an array is recognized as pointing to the object rather than the next.
This padding forces an attacker to overwrite the padding (4 bytes on IA32). He can then overwrite the first four bytes
of the next chunk with an off by eight attack. If the target memory location is located close to a chunk and only the
least significant byte of the pointer needs to be modified then an off by five might suffice.

Double free Dangling pointer references cannot exist if the programmer does not interfere with the garbage collector.
However if the programmer explicitly frees memory, a double free can occur and could be exploitable.

Figures 5 and 6 illustrate how this vulnerability can be exploited: chunkl was the last chunk freed and was added
to the start of the linked list and points to chunk2. If chunk?2 is freed a second time it will be placed at the beginning
of the list, but chunkl will still point to it. When chunk2 is subsequently reallocated, it will be writable and still
be located in the list of free chunks. The attacker can now modify the pointer and if more chunks of the same size
are allocated eventually the chunk to which chunk2 points will be returned as a valid chunk, allowing the attacker to
overwrite arbitrary memory locations.

chunk1 chunk2 L chunk2 chunki J
Next > Next Next —> Next

Old user Old user Old user Old user
data data data data

Figure 5: Linked list of free chunks in Boehm’s garbage Figure 6: Double free of chunk2 in Boehm’s garbage col-
collector lector

3.3 Summary

The memory allocator we presented in this section is representative for the many memory allocators that are in common
use today. There are many others like the memory allocator used by Windows, the allocator used in the Solaris and
IRIX operating systems or the allocator used in FreeBSD that are also vulnerable to similar attacks [4,9,36].

Very few garbage collectors exist for C and C++, in the previous section we also discussed how a garbage collector
can be vulnerable to the same attacks that are often performed on memory allocators.

4 A more secure memory allocator

As can be noted from the previous sections many memory managers are vulnerable to code injection attacks if an
attacker can modify its management information. In this section we describe a new approach to handling the manage-
ment information that is more robust against these kind of attacks. This new approach could be applied to the managers
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discussed above and we also describe a prototype implementation (called dnmalloc) where we modified dimalloc to
incorporate the changes we described.

4.1 Countermeasure Design

The main principle used to design this countermeasure is to separate management information (chunkinfo) from the
data stored by the user (chunkdata). This management information is then stored in separate contiguous memory
regions that only contain other management information. To protect these regions from being overwritten by overflows
in other memory mapped areas, they are protected by guard pages. This simple design essentially makes overwriting
the chunkinfo by using a heap-based buffer overflow impossible. Figure 7 depicts the typical memory layout of a
program that uses a general memory allocator (on the left) and one that uses our modified design (on the right)

Most memory allocators will allocate memory in the datasegment that could be increased (or decreased) as nec-
essary using the brk systemcall [50]. However, when larger chunks are requested, it can also allocate memory in the
shared memory area > using the mmap® systemcall to allocate memory for the chunk. In Fig. 7, we have depicted this
behavior: there are chunks allocated in both the heap and in the shared memory area. Note that a program can also
map files and devices into this region itself, we have depicted this in Fig. 7 in the boxes labeled 'Program mapped
memory’.

In this section we describe the structures needed to perform this separation in a memory allocator efficiently. In
the next paragraph we describe the structures that are used to retrieve the chunkinfo when presented with a pointer to
chunkdata. In the paragraph that follows the next, we discuss the management of the region where these chunkinfos
are stored.

SNote that memory in this area is not necessarily shared among applications, it has been allocated by using mmap
Smmap is used to map files or devices into memory. However, when passing it the MAP_ANON flag or mapping the /dev/zero file, it can be used
to allocate a specific region of contiguous memory for use by the application (however, the granularity is restricted to page size) [50].



4.1.1 Lookup table and lookup function

To perform the separation of the management information from the actual chunkdata, we use a lookup table. The
entries in the lookup table contain pointers to the chunkinfo for a particular chunkdata. When given such a chunkdata
address, a lookup function is used to find the correct entry in the lookup table.

The table is stored in a map of contiguous memory that is big enough to hold the maximum size of the lookup table.
This map can be large on 32-bit systems, however it will only use virtual address space rather than physical memory.
Physical memory will only be allocated by the operating system when the specific page is written to. To protect this
memory from buffer overflows in other memory in the shared memory region, a guard page is placed before it. At the
right hand side of Fig. 7 we illustrate what the layout looks like in a typical program that uses this design.

4.1.2 Chunkinfo regions

Chunkinfos are also stored in a particular contiguous region of memory (called a chunkinfo region), which is protected
from other memory by a guard page. This region also needs to be managed, several options are available for doing
this. We will discuss the advantages and disadvantages of each.

Our preferred design, which is also the one used in our implementation and the one depicted in Fig. 7, is to map
a region of memory large enough to hold a predetermined amount of chunkinfos. To protect its contents, we place a
guard page at the top of the region. When the region is full, a new region, with its own guard page, is mapped and
added to a linked list of chunkinfo regions. This region then becomes the active region, meaning that all requests for
new chunkinfos that cannot be satisfied by existing chunkinfos, will be allocated in this region. The disadvantage of
this technique is that a separate guard page is needed for every chunkinfo region, because the allocator or program
may have stored data in the same region (as depicted in Fig. 7). Although such a guard page does not need actual
memory (it will only use virtual memory), setting the correct permissions for it is an expensive system call (requiring
the system to perform several time-consuming actions to execute).

When a chunkdata disappears, either because the associated memory is released back to the system or because
two chunkdatas are coalesced into one, the chunkinfo is stored in a linked list of free chunkinfos. In this design, we
have a separate list of free chunkinfos for every region. This list is contained in one of the fields of the chunkinfo
that is unused because it is no longer associated with a chunkdata. When a new chunkinfo is needed, the allocator
returns one of these free chunkinfos: it goes over the lists of free chunkinfos of all existing chunkinfo regions (starting
at the currently active region) to attempt to find one. If none can be found, it allocates a new chunkinfo from the active
region. If all chunkinfos for a region have been added to its list of free chunkinfos, the entire region is released back to
the system.

An alternative design is to map a single chunkinfo region into memory large enough to hold a specific amount of
chunkinfos. When the map is full, it can be extended as needed. The advantage is that there is one large region, and as
such, not much management is required on the region, except growing and shrinking it as needed. This also means that
we only need a single guard page at the top of the region to protect the entire region. However, a major disadvantage of
this technique is that, if the virtual address space behind the region is not free, extension means moving it somewhere
else in the address space. While the move operation is not expensive because of the paging system used in modern
operating systems, it invalidates the pointers in the lookup table. Going over the entire lookup table and modifying the
pointers is prohibitively expensive. A possible solution to this is to store offsets in the lookup table and to calculate
the actual address of the chunkinfo based on the base address of the chunkinfo region.

A third design is to store the chunkinfo region directly below the maximum size the stack can grow to (if the
stack has such a fixed maximum size), and make the chunkinfo region grow down toward the heap. This eliminates the
problem of invalidation as well, and does not require extra calculations to find a chunkinfo, given an entry in the lookup
table. To protect this region from being overwritten by data stored on the heap, a guard page has to be placed at the top
of the region, and has to be moved every time the region is extended. A major disadvantage of this technique is that it
can be hard to determine the start of the stack region on systems that use address space layout randomization [51]. It
is also incompatible with programs that do not have a fixed maximum stack size.

These last two designs only need a single, but sorted, list of free chunkinfos. When a new chunkinfo is needed,
it can return, respectively, the lowest or highest address from this list. When the free list reaches a predetermined
size, the region can be shrunk and the active chunkinfos in the shrunk area are copied to free space in the remaining
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chunkinfo region.

4.2 Prototype Implementation

Dnmalloc was implemented by modifying dlmalloc 2.7.2 to incorporate the changes described in Section 4.1. The
ideas used to build this implementation, however, could also be applied to other memory allocators. Dimalloc was
chosen because it is very widely used (in its ptmalloc incarnation) and is representative for this type of memory
allocators. DImalloc was chosen over ptmalloc because it is less complex to modify and because the modifications
done to dimalloc to achieve ptmalloc do not have a direct impact on the way the memory allocator can be abused by
an attacker.

4.2.1 Lookup table and lookup function

The lookup table is in fact a lightweight hashtable: to implement it, we divide every page in 256 possible chunks of
16 bytes (the minimum chunk size), which is the maximum amount of chunks that can be stored on a single page in
the heap. These 256 possible chunks are then further divided into 32 groups of 8 elements. For every such group we
have 1 entry in the lookup table that contains a pointer to a linked list of these elements (which has a maximum size
of 8 elements). As a result we have a maximum of 32 entries for every page. The lookup table is allocated using
the memory mapping function, mmap. This allows us to reserve virtual address space for the maximum size that the
lookup table can become without using physical memory. Whenever a new page in the lookup table is accessed, the
operating system will allocate physical memory for it.
We find an entry in the table for a particular group from a chunkdata’s address in two steps:

1. We subtract the address of the start of the heap from the chunkdata’s address.

2. Then we shift the resulting value 7 bits to the right. This will give us the entry of the chunk’s group in the lookup
table.

To find the chunkinfo associated with a chunk we now have to go over a linked list that contains a maximum of
8 entries and compare the chunkdata’s address with the pointer to the chunkdata that is stored in the chunkinfo. This
linked list is stored in the hashnext field of the chunkinfo (illustrated in Fig. 8).
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4.2.2 Chunkinfo

A chunkinfo contains all the information that is available in dimalloc, and adds several extra fields to correctly maintain
the state. The layout of a chunkinfo is illustrated in Fig. 8: the prev_size, size, forward and backward pointers serve
the same purpose as they do in dlmalloc, the hashnext field contains the linked list that we mentioned in the previous
section and the chunkdata field contains a pointer to the actual allocated memory.

4.3 Managing chunk information

The chunk information itself is stored in a fixed map that is big enough to hold a predetermined amount of chunkinfos.
Before this area a guard page is mapped, to prevent the heap from overflowing into this memory region. Whenever
a new chunkinfo is needed, we simply allocate the next 24 bytes in the map for the chunkinfo. When we run out of
space, a new region is mapped together with a guard page.

One chunkinfo in the region is used to store the meta-data associated with a region. This metadata (illustrated in
Fig. 8, by the chunkinfo region info structure) contains a pointer to the start of the list of free chunks in the freelist field.
It also holds a counter to determine the current amount of free chunkinfos in the region. When this number reaches
the maximum amount of chunks that can be allocated in the region, it will be deallocated. The chunkinfo region info
structure also contains a position field that determines where in the region to allocate the next chunkinfo. Finally, the
next_region field contains a pointer to the next chunkinfo region.

5 Evaluation

The realization of these extra modifications comes at a cost: both in terms of performance and in terms of memory
overhead. To evaluate how high the performance overhead of dnmalloc is compared to the original dimalloc, we ran
the full SPEC® CPU2000 Integer reportable benchmark [27], which gives us an idea of the overhead associated with
general-purpose programs. We also evaluated the implementation using a suite of allocator-intensive benchmarks,
which have been widely used to evaluate the performance of memory managers [11,12,26,29]. While these two suites
of benchmarks make up the macrobenchmarks of this section, we also performed microbenchmarks to get a better
understanding of which allocator functions are faster or slower when using dnmalloc.

Table 1 holds a description of the programs that were used in both the macro- and the microbenchmarks. For
all the benchmarked applications we have also included the number of times they call the most important memory
allocation functions: malloc, realloc, calloc’ and free (the SPEC'Y benchmark calls programs multiple times with
different inputs for a single run; for these we have taken the average number of calls).

The results of the performance evaluation can be found in Section 5.1. Both macrobenchmarks and the microbench-
marks were also used to measure the memory overhead of our prototype implementation compared to dlmalloc. In
Section 5.2 we discuss these results. Finally, we also performed an evaluation of the security of dnmalloc in Section
5.3 by running a set of exploits against real world programs using both dlmalloc and dnmalloc.

Dnmalloc and all files needed to reproduce these benchmarks are available publicly [57].

5.1 Performance

This section evaluates our countermeasure in terms of performance overhead. All benchmarks were run on 10 identical
machines (Pentium 4 2.80 Ghz, 512MB RAM, no hyperthreading, Redhat 6.2, kernel 2.6.8.1).

5.1.1 Macrobenchmarks

To perform these benchmarks, the SPEC® benchmark was run 10 times on these PCs for a total of 100 runs for
each allocator. The allocator-intensive benchmarks were run 50 times on the 10 PCs for a total of 500 runs for each
allocator.

7This memory allocator call will allocate memory and will then clear it by ensuring that all memory is set to 0
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SPEC CPU2000 Integer benchmark programs

Program Description malloc | realloc calloc free
164.gzip Data compression utility 87,241 0 0 87,237
175.vpr FPGA placement routing 53,774 9 48 51,711
176.gcc C compiler 22,056 2 0 18,799
181.mcf Network flow solver 2 0 3 5
186.crafty Chess program 39 0 0 2
197.parser | Natural language processing 147 0 0 145
252.eon Ray tracing 1,753 0 0 1,373
253.perlbmk Perl 4,412,493 | 195,074 0 4,317,092
254.gap Computational group theory 66 0 1 66
255.vortex Object Oriented Database 6 0 | 1,540,780 1,467,029
256.bzip2 Data compression utility 12 0 0 2
300.twolf Place and route simulator 561,505 4 13,062 492,727
Allocator-intensive benchmarks
Program Description malloc | realloc calloc free
boxed-sim Balls-in-box simulator 3,328,299 63 0 3,312,113
cfrac Factors numbers 581,336,282 0 0 | 581,336,281
espresso Optimizer for PLAs 5,084,290 59,238 0 5,084,225
lindsay Hypercube simulator 19,257,147 0 0 19,257,147

Table 1: Programs used in the evaluations of dnmalloc

SPEC CPU2000 Integer benchmark programs

Program DiImalloc r/t (s) | Dnmalloc r/t (s) | R/t overhead
164.gzip 253 +0 253 +0 0%
175.vpr 361 £ 0.15 361.2 £0.14 0.05%
176.gcc 153.9 + 0.05 154.1 +0.04 0.13%
181.mcf 287.3 + 0.07 290.1 £+ 0.07 1%
186.crafty 253+0 252.9 +0.03 -0.06%
197 .parser 347 £+ 0.01 347 £+ 0.01 0%
252.eon 770.3 + 0.17 782.6 + 0.1 1.6%
253.perlbmk 243.2 + 0.04 255 £0.01 4.86%
254.gap 184.1 4+ 0.03 184 £ 0 -0.04%
255.vortex 250.2 + 0.04 223.6 £ 0.05 -10.61%
256.bzip2 361.7 &+ 0.05 363 £+ 0.01 0.35%
300.twolf 522.9 + 0.44 511.9 £ 0.55 2.11%
Allocator-intensive benchmarks
Program Dlmalloc r/t (s) | Dnmalloc 1/t (s) | R/t overhead
boxed-sim 230.6 + 0.08 232.2 +£0.12 0.73%
cfrac 552.9 +0.05 587.9 + 0.01 6.34%
espresso 60 4+ 0.02 60.3 + 0.01 0.52%
lindsay 239.1 +0.02 242.3 +0.02 1.33%

Table 2: Average macrobenchmark runtime results for dimalloc and dnmalloc
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Microbenchmarks

Program DL r/t DL r/t | R/t Overh.
loop: malloc | 0.28721 4+ 0.00108 | 0.06488 £ 0.00007 -77.41%
loop: realloc | 1.99831 + 0.00055 1.4608 £ 0.00135 -26.9%
loop: free 0.06737 4+ 0.00001 | 0.03691 £ 0.00001 -45.21%
loop: calloc | 0.32744 4+ 0.00096 | 0.2142 £ 0.00009 -34.58%
loop2: malloc | 0.32283 4+ 0.00085 | 0.39401 £ 0.00112 22.05%
loop2: realloc | 2.11842 £ 0.00076 | 1.26672 % 0.00105 -40.2%
loop2: free 0.06754 + 0.00001 | 0.03719 £ 0.00005 -44.94%
loop2: calloc | 0.36083 £ 0.00111 0.1999 £ 0.00004 -44.6%

Table 3: Average microbenchmark runtime results for dimalloc and dnmalloc

Table 2 contains the average runtime, including standard error, of the programs in seconds. The results show
that the runtime overhead of our allocator are mostly negligible both for general programs as for allocator-intensive
programs. However, for perlbmk and cfrac the performance overhead is slightly higher: 4% and 6%. These show
that even for such programs the overhead for the added security is extremely low. In some cases (vortex and twolf)
the allocator even improves performance. This is mainly because of improved locality of management information
in our approach: in general all the management information for several chunks will be on the same page, which
results in more cache hits [26]. When running the same tests on a similar system with L1 and L2 cache® disabled, the
performance benefit for vortex went down from 10% to 4.5%.

5.1.2 Microbenchmarks

We have included two microbenchmarks. In the first microbenchmark, the time that the program takes to perform
100,000 mallocs of random® chunk sizes ranging between 16 and 4096 bytes was measured. Afterwards the time was
measured for the same program to realloc these chunks to different random size (also ranging between 16 and 4096
bytes). We then measured how long it took the program to free those chunks and finally to calloc 100,000 new chunks
of random sizes. The second benchmark does essentially the same but also performs a memset'® on the memory it
allocates (using malloc, realloc and calloc). The microbenchmarks were each run 100 times on a single PC (the same
configuration as was used for the macrobenchmarks) for each allocator.

The average of the results (in seconds) of these benchmarks, including the standard error, for dlmalloc and dnmal-
loc can be found in Table 3. Although it may seem from the results of the loop program that the malloc call has an
enormous speed benefit when using dnmalloc, this is mainly because our implementation does not access the memory
it requests from the system. This means that on systems that use optimistic memory allocation (which is the default
behavior on Linux) our allocator will only use memory when the program accesses it.

To measure the actual overhead of our allocator when the memory is accessed by the application, we also performed
the same benchmark in the program loop2, but in this case always set all bytes in the acquired memory to a specific
value. Again there are some caveats in the measured result: while it may seem that the calloc function is much faster,
in fact it has the same overhead as the malloc function followed by a call to memset (because calloc will call malloc
and then set all bytes in the memory to 0). However, the place where it is called in the program is of importance here:
it was called after a significant amount of chunks were freed and as a result this call will reuse existing free chunks.
Calling malloc in this case would have produced similar results.

The main conclusion we can draw from these microbenchmarks is that the performance of our implementation is
very close to that of dimalloc: it is faster for some operations, but slower for others.

8These are caches that are faster than the actual memory in a computer and are used to reduce the cost of accessing general memory [52].
9 Although a fixed seed was set so two runs of the program return the same results
10This call will fill a particular range in memory with a particular byte.
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5.2 Memory overhead

Our implementation also has an overhead when it comes to memory usage: the original allocator has an overhead of
approximately 8 bytes per chunk. Our implementation has an overhead of approximately 24 bytes to store the chunk
information and for every 8 chunks, a lookup table entry will be used (4 bytes). Depending on whether the chunks
that the program uses are large or small, our overhead could be low or high. To test the memory overhead on real
world programs, we measured the memory overhead for the benchmarks we used to test performance, the results (in
megabytes) can be found in Table 4. They contain the complete overhead of all extra memory the countermeasure uses
compared to dlmalloc.

SPEC CPU2000 Integer benchmark programs
Program dlmalloc mem. use (MB) | our mem. use (MB) | Overhead
164.gzip 180.37 180.37 0%
175.vpr 20.07 20.82 3.7%
176.gcc 81.02 81.14 0.16%
181.mcf 94.92 94.92 0%
186.crafty 0.84 0.84 0.12%
197 .parser 30.08 30.08 0%
252.eon 0.33 0.34 4.23%
253.perlbmk 53.80 63.37 17.8%
254.gap 192.07 192.07 0%
255.vortex 60.17 63.65 5.78%
256.bzip2 184.92 184.92 0%
300.twolf 3.22 5.96 84.93%
Allocator-intensive benchmarks
Program dlmalloc mem. use (MB) | our mem. use (MB) | Overhead
boxed-sim 0.78 1.16 49.31%
cfrac 2.14 341 59.13%
espresso 5.11 5.88 15.1%
lindsay 1.52 1.57 2.86%
Microbenchmarks
loop/loop2 \ 213.72 \ 217.06 \ 1.56%

Table 4: Average memory usage for dimalloc and dnmalloc

In general, the relative memory overhead of our countermeasure is fairly low (generally below 20%), but in some
cases the relative overhead can be very high, this is the case for twolf, boxed-sim and cfrac. These applications
use many very small chunks, so while the relative overhead may seem high, if we examine the absolute overhead it is
fairly low (ranging from 120 KB to 2.8 MB). Applications that use larger chunks have a much smaller relative memory
overhead.

5.3 Security evaluation

In this section we present experimental results when using our memory allocator to protect applications with known
vulnerabilities against existing exploits.

Table 5 contains the results of running several exploits against known vulnerabilities when these programs were
compiled using dlmalloc and dnmalloc respectively. When running the exploits against dlmalloc, we were able to
execute a code injection attack in all cases. However, when attempting to exploit dnmalloc, the overflow would write
into adjacent chunks, but would not overwrite the management information, as a result, the programs kept running.
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Exploit for Dlmalloc | Dnmalloc

Wu-ftpd 2.6.1 [61] Shell | Continues

Sudo 1.6.1 [32] Shell Crash

Sample heap-based buffer overflow Shell | Continues
Sample double free Shell | Continues

Table 5: Results of exploits against vulnerable programs protected with dnmalloc

These kinds of security evaluations can only prove that a particular attack works, but it cannot disprove that no
variation of this attack exists that does work. Because of the fragility of exploits, a simple modification in which an
extra field is added to the memory management information for the program would cause many exploits to fail. While
this is useful against automated attacks, it does not provide any real protection from a determined attacker. Testing
exploits against a security solution can only be used to prove that it can be bypassed. As such, we provide these
evaluations to demonstrate how our countermeasure performs when confronted with a real world attack, but we do not
make any claims as to how accurately they evaluate the security benefit of dnmalloc.

However, the design in itself of the allocator gives strong security guarantees against buffer overflows, since none
of the memory management information is stored with user data. We contend that it is impossible to overwrite it using
a heap-based buffer overflow. If such an overflow occurs, an attacker will start at a chunk and will be able to overwrite
any data that is behind it. Since such an buffer overflow is contiguous, the attacker will not be able to overwrite the
management information. If an attacker is able to write until the management information, it will be protected by
the guard page. An attacker could use a pointer stored in heap memory to overwrite the management information,
but this would be a fairly useless operation: the management information is only used to be able to modify a more
interesting memory location. If attackers already control a pointer they could overwrite the target memory location
directly instead of going through an extra level of indirection.

Our approach does not detect when a buffer overflow has occurred. It is, however, possible to easily and efficiently
add such detection as an extension to dnmalloc. A technique similar to the one used in [37,44] could be added to the
allocator by placing a random number at the top of a chunk (where the old management information used to be) and
by mirroring that number in the management information. Before performing any heap operation (i.e. malloc, free,
coalesce, etc) on a chunk, the numbers would be compared and if changed, it could report the attempted exploitation
of a buffer overflow. This of course only detects overflows which try to exploit the original problem that [37,44] and
we address: overwriting of the management information. If an overflow overwrites a pointer in another chunk and no
heap operations are called, then the overflow will go undetected.

A major advantage of this approach over [44] is that it does not rely on a global secret value, but can use a per-chunk
secret value. While this approach would improve detection of possible attacks, it does not constitute the underlying
security principle, meaning that the security does not rely on keeping values in memory secret.

Finally, our countermeasure (as well as other existing ones [23, 44]) focuses on protecting this memory manage-
ment information, it does not provide strong protection to pointers stored by the program itself in the heap. There
are no efficient mechanisms yet to transparently protect these pointers from modification through all possible kinds
of heap-based buffer overflows. In order to achieve reasonable performance, countermeasure designers have focused
on protecting the most targeted pointers. Extending the protection to more pointers without incurring a substantial
performance penalty remains a challenging topic for future research.

6 Related work

Many countermeasures for code injection attacks exist. In this section, we briefly describe the different approaches
that could be applicable to protecting against heap-based buffer overflows, but will focus more on the countermeasures
which are designed specifically to protect memory allocators from heap-based buffer overflows.

16



6.1 Protection from attacks on heap-based vulnerabilities

There are two types of allocators that try to detect or prevent heap overflow vulnerabilities: debugging allocators and
runtime allocators. Debugging allocators are allocators that are meant to be used by the programmer. They can perform
extra checks before using the management information stored in the chunks or ensure that the chunk is allocated in
such a way that it will cause an error if it is overflowed or freed twice. Runtime allocators are meant to be used in final
programs and try to protect memory allocators by performing lightweight checks to ensure that chunk information has
not been modified by an attacker.

6.1.1 Debugging memory allocators

Dlmalloc has a debugging mode that will detect modification of the memory management information. When run in
debug mode the allocator will check to make sure that the next pointer of the previous chunk equals the current chunk
and that the previous pointer of the next chunk equals the current chunk. To exploit a heap overflow or a double free
vulnerability, the pointers to the previous chunk and the next chunk must be changed.

Electric fence [42] is a debugging library that will detect both underflows and overflows on heap-allocated memory.
It operates by placing each chunk in a separate page and by either placing the chunk at the top of the page and placing a
guard page before the chunk (underflow) or by placing the chunk at the end of the page and placing a guard page after
the chunk (overflow). This is an effective debugging library but it is not realistic to use in a production environment
because of the large amount of memory it uses (every chunk is at least as large as a page, which is 4kb on IA32) and
because of the large performance overhead associated with creating a guard page for every chunk. To detect dangling
pointer references, it can be set to never release memory back to the system. Instead, Electric fence will mark it as
inaccessible, this will however result in an even higher memory overhead.

6.1.2 Runtime allocators

Robertson et al. [44] designed a countermeasure that attempts to protect against attacks on the dlmalloc library man-
agement information. This is done by changing the layout of both allocated and unallocated memory chunks. To
protect the management information a checksum and padding (as chunks must be of double word length) is added to
every chunk. The checksum is a checksum of the management information encrypted (XOR) with a global read-only
random value, to prevent attackers from generating their own checksum. When a chunk is allocated the checksum is
added and when it is freed the checksum is verified. Thus if an attacker overwrites this management information with
a buffer overflow a subsequent free of this chunk will abort the program because the checksum is invalid. However,
this countermeasure can be bypassed if an information leak exists in the program that would allow the attacker to print
out the encryption key. The attacker can then modify the chunk information and calculate the correct value of the
checksum. The allocator would then be unable to detect that the chunk information has been changed by an attacker.

Dimalloc 2.8.x also contains extra checks to prevent the allocator from writing into memory that lies below the
heap (this however does not stop it from writing into memory that lies above the heap, such as the stack). It also offers
a slightly modified version of the Robertson countermeasure as a compile-time option.

ContraPolice [37] also attempts to protect memory allocated on the heap from buffer overflows that would over-
write memory management information associated with a chunk of allocated memory. It uses the same technique as
proposed by StackGuard [20], i.e. canaries, to protect these memory regions. It places a randomly generated canary
both before and after the memory region that it protects. Before exiting from a string or memory copying function,
a check is done to ensure that, if the destination region was on the heap, the canary stored before the region matches
the canary stored after the region. If it does not, the program is aborted. While this does protect the contents of other
chunks from being overwritten using one of these functions, it provides no protection for other buffer overflows. It
also does not protect a buffer from overwriting a pointer stored in the same chunk. This countermeasure can also be
bypassed if the canary value can be read: the attacker could write past the canary and make sure to replace the canary
with the same value it held before.

Although no performance measurements were done by the author, it is reasonable to assume that the performance
overhead would be fairly low.

17



Recent versions of glibc [23] have added an extra sanity check to its allocator: before removing a chunk from
the doubly linked list of free chunks, the allocator checks if the backward pointer of the chunk that the unlinking
chunk’s forward pointer points to is equal to the unlinking chunk. The same is done for the forward pointer of the
chunk’s backward pointer. It also adds extra sanity checks that make it harder for an attacker to use the previously
described technique of attacking the memory allocator. However, recently, several attacks on this countermeasure
were published [43]. Although no data is available on the performance impact of adding these lightweight checks, it
is reasonable to assume that no performance loss is incurred by performing them.

DieHard [10] in standalone mode is a memory allocator that will add protection against accidental overflows of
buffers by randomizing allocations. The allocator will separate memory management information from the data in the
heap. It will also try to protect the contents of a chunk by allocating chunks of a specific chunk size into a region
at random positions in the region. This will make it harder for an application to accidentally overwrite the contents
of a chunk, however a determined attacker could still exploit it by replicating the modified contents over the entire
region. Performance for this countermeasure is very good for some programs (it improves performance for some)
while relatively high for others.

6.2 Alternative approaches

Other approaches that protect against the more general problem of buffer overflows also protect against heap-based
buffer overflows. In this section, we give a brief overview of this work. A more extensive survey can be found in [58].

6.2.1 Safe languages

Safe languages are languages where it is generally not possible for any known code injection vulnerability to exist as
the language constructs prevent them from occurring. A number of safe languages are available that will prevent these
kinds of implementation vulnerabilities entirely. Examples of such languages include Java and ML but these are not
in the scope of our discussion. However there are safe languages [21, 25,28, 35, 38,41] that remain as close to C or
C++ as possible, these are generally referred to as safe dialects of C. While some safe languages [18] try to stay more
compatible with existing C programs, use of these languages may not always be practical for existing applications.

6.2.2 Compiler-based countermeasures

Bounds checking [5, 30, 45, 54] is the ideal solution for buffer overflows, however performing bounds checking in
C can have a severe impact on performance or may cause existing object code to become incompatible with bounds
checked object code.

Protection of all pointers as provided by PointGuard [19] is an efficient implementation of a countermeasure that
will encrypt (using XOR) all pointers stored in memory with a randomly generated key and decrypts the pointer before
loading it into a register. To protect the key, it is stored in a register upon generation and is never stored in memory.
However attackers could guess the decryption key if they were able to view several different encrypted pointers.
Another attack, described in [3] describes how an attacker could bypass PointGuard by overwriting a particular byte
of the pointer. By modifying one byte, the pointer value has changed but the three remaining bytes will still decrypt
correctly because of the weakness of XOR encryption. This significantly reduces the randomness (if only one byte
needs to be overwritten, an attacker has a 1 in 256 chance of guessing the correct one, if two bytes are overwritten the
chances are 1 in 65536, which is still significantly less than 1 in 232,

Another countermeasure that protects all pointers is the Security Enforcement Tool [55] where runtime protection
is performed by keeping a status bit for every byte in memory, that determines if writing to a specific memory region
via an unsafe pointer is allowed or not.

6.2.3 Operating system-based countermeasures

Non-executable memory [47, 51] tries to prevent code injection attacks by ensuring that the operating system does
not allow execution of code that is not stored in the text segment of the program. This type of countermeasure can
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however be bypassed by a return-into-libc attack [53] where an attacker executes existing code (possibly with different
parameters).

Randomized instruction sets [8, 33] also try to prevent an attacker from executing injected code by encrypting
instructions on a per process basis while they are in memory and decrypting them when they are needed for execution.
However, software based implementations of this countermeasure incur large performance costs, while a hardware
implementation is not immediately practical. Determined attackers may also be able to guess the encryption key and,
as such, be able to inject code [49].

Address randomization [13,51] is a technique that attempts to provide security by modifying the locations of
objects in memory for different runs of a program, however the randomization is limited in 32-bit systems (usually to
16 bits for the heap) and as a result may be inadequate for a determined attacker [46].

6.2.4 Library-based countermeasures

LibsafePlus [6] protects programs from all types of buffer overflows that occur when using unsafe C library functions
(e..g strcpy). It extracts the sizes of the buffers from the debugging information of a program and as such does not
require a recompile of the program if the symbols are available. If the symbols are not available, it will fall back to less
accurate bounds checking as provided by the original Libsafe [7] (but extended beyond the stack). The performance
of the countermeasure ranges from acceptable for most benchmarks provided to very high for one specific program
used in the benchmarks

6.2.5 Execution monitoring

In this section we describe two countermeasures that will monitor the execution of a program and will prevent trans-
ferring control-flow which could be unsafe.

Program shepherding [34] is a technique that will monitor the execution of a program and will disallow control-
flow transfers'! that are not considered safe. An example of a use for shepherding is to enforce return instructions to
only return to the instruction after the call site. The proposed implementation of this countermeasure is done using a
runtime binary interpreter, as a result the performance impact of this countermeasure is significant for some programs,
but acceptable for others.

Control-flow integrity [1] determines a program’s control flow graph beforehand and ensures that the program
adheres to it. It does this by assigning a unique ID to each possible control flow destination of a control flow transfer.
Before transferring control flow to such a destination, the ID of the destination is compared to the expected ID, and if
they are equal, the program proceeds as normal. Performance overhead may be acceptable for some applications, but
may be prohibitive for others.

7 Conclusion

In this paper we examined the security of several memory allocators. We discussed how they could be exploited and
showed that most memory allocators are vulnerable to code injection attacks.

Afterwards, we presented a redesign for existing memory allocators that is more resilient to these attacks than
existing allocator implementations. We implemented this design by modifying an existing memory allocator. This
implementation has been made publicly available. We demonstrated that it has a negligible, sometimes even beneficial,
impact on performance. The overhead in terms of memory usage is very acceptable. Although our approach is
straightforward, surprisingly, it offers stronger security than comparable countermeasures with similar performance
overhead because it does not rely on the secrecy of random numbers stored in memory.

1ISuch a control flow transfer occurs when e.g. a call or ret instruction is executed.
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