
Applying machinemodel-aided countermeasure design to improve
memory allocator security

Yves Younan, Wouter Joosen, Frank Piessens
DistriNet, Department of Computer Science

Katholieke Universiteit Leuven
Celestijnenlaan 200a, B-3001 Leuven, Belgium

{yvesy,wouter,frank}@cs.kuleuven.ac.be

Abstract
This paper is a companion paper for the talk that will be pre-
sented at the 22nd Chaos Communication Congress. We will
describe the background on how the results that we detail in
the talk were achieved but will not substantially overlap with
the talk. We will focus on a more structured approach to build
countermeasures using a model of the execution environment.
This machinemodel allows reasoning about countermeasures at
a higher level and allows for a more effective design where
possible shortcomings can be spotted more easily. The paper
then describes how we applied this technique to design a coun-
termeasure to protect memory allocators from heap-based at-
tacks.

1 Introduction
Code injection attacks have been a known security problem for
over 20 years, yet they still occur in modern day applications
and countermeasures that try to protect against these attacks
are often built ad hoc and as a result are often bypassable by at-
tackers that use more advanced exploitation techniques. In this
paper we will discuss a more structured approach to designing
countermeasures for code injection attacks that was first de-
scribed in [9]. While stack-based buffer overflows have domi-
nated the vulnerabilities which can cause code injection attacks,
heap-based buffer overflows and dangling pointer references to
heap memory are also important avenues of attack. In this pa-
per we describe how we applied our approach to build a coun-
termeasure for attacks on heap-based vulnerabilities that take
advantage of properties of the memory allocator.

The paper is structured as follows: section 2 briefly sum-
marizes the technical details of how an attacker would exploit
a heap-based vulnerability when the application uses dlmalloc
as memory allocator. Section 3 describes our model-based ap-
proach to designing countermeasures for code injection attacks
and how we applied this approach to build a more secure allo-
cator. Section 4 presents our conclusion.

2 Heap-based vulnerabilities
Heap memory is dynamically allocated at run-time by the appli-
cation. Exploitation of a buffer overflow in this memory is sim-
ilar to exploiting a stack-based overflow, except that no return
addresses are stored in this segment of memory so an attacker

must use other techniques to gain control of the execution-flow.
An attacker could of course overwrite a function pointer or
perform an indirect pointer overwrite [3] on pointers stored in
these memory regions, but these are not always available. Over-
writing the memory management information that is generally
associated with a dynamically allocated chunk that is managed
by a dynamic memory allocator [1, 2, 5, 7] is a more general
way of exploiting a heap-based overflow.

We will demonstrate how dynamic memory allocators can be
attacked by focusing on a specific implementation of a dynamic
memory allocator called dlmalloc [6]. While dlmalloc is used
as a basis for the allocator in the GNU/Linux operating system,
these techniques could also be applied to similar allocators used
in other operating systems (as we demonstrate in [10]). We will
describe dlmalloc briefly and will summarize two attack tech-
niques that would allow an attacker to manipulate the applica-
tion into overwriting arbitrary memory locations by overwriting
the allocator’s memory management information.

2.1 Doug Lea’s memory allocator

The dlmalloc library is a run-time memory allocator that di-
vides the heap memory at its disposal into contiguous chunks,
which vary in size as the various allocation routines (malloc,
free, realloc, . . .) are called. An invariant is that a free chunk
never borders another free chunk when one of these routines
has completed: if two free chunks had bordered, they would
have been coalesced into one larger free chunk. These free
chunks are kept in a doubly linked list, sorted by size. When the
memory allocator at a later time requests a chunk of the same
size as one of these free chunks, the first chunk of that size in
the list will be removed from the list and will be made available
for use in the program (i.e. it will turn into an allocated chunk).

All memory management information (including this list of
free chunks) is stored in-band. That is, the information is stored
in the chunks: when a chunk is freed the memory normally al-
located for data is used to store a forward and backward pointer.
Figure 1 illustrates what a heap of used and unused chunks
could look like. Chunk1 is an allocated chunk containing in-
formation about the size of the chunk stored before it and its
own size1. The rest of the chunk is available for the program

1The size of allocated chunks is always a multiple of eight, so the three least
significant bits of the size field are used for management information: a bit to
indicate if the previous chunk is in use or not and one to indicate if the memory
is mapped or not. The last bit is currently unused. The ”previous chunk in
use”-bit can be modified by an attacker to force coalescing of chunks. How

1

Size of prev. chunk
Size of chunk1

User data

Size of chunk1
Size of chunk2

Old user data

Forward pointer
Backward pointer

chunk1

chunk2

Size of prev. chunk
Size of chunk3

Old user data

Forward pointer
Backward pointer

Size of prev. chunk
Size of chunk4

Old user data

Forward pointer
Backward pointer

Lower addresses

Higher addresses

chunk3

chunk4

Figure 1: Heap containing used and free chunks

to write data in. Chunk2 2 represents a free chunk that is lo-
cated in a doubly linked list together with chunk3 and chunk4.
Chunk3 is the first chunk in the chain: its backward pointer
points to chunk2 and its forward pointer points to a previous
chunk in the list. Chunk2 is the next chunk, with its forward
pointer pointing to chunk3 and its backward pointer pointing to
chunk4. Chunk4 is the last chunk in our example: its backward
pointer points to a next chunk in the list and its forward pointer
points to chunk2.

2.2 Exploiting heap-based overflows

Figure 2 shows what could happen if an array that is located
in chunk1 is overflowed: an attacker has overwritten the man-
agement information of chunk2. The size fields are left un-
changed (although these could be modified if needed). The
forward pointer has been changed to point to 12 bytes before
the return address and the backward pointer has been changed
to point to code that will jump over the next few bytes and then
execute the injected code. When chunk1 is subsequently freed,
it will be coalesced together with chunk2 into a larger chunk.
As chunk2 will no longer be a separate chunk after the coa-
lescing it must first be removed from the list of free chunks.
The unlink macro takes care of this: internally a free chunk is
represented by a struct containing the following unsigned long
integer fields (in this order): prev size, size, fd and bk. A chunk
is unlinked as follows:

chunk2−>fd−>bk = chunk2−>bk
chunk2−>bk−>fd = chunk2−>fd

Which is the same as (based on the struct used to represent
malloc chunks):

this coalescing can be abused is explained later.
2The representation of chunk2 is not entirely correct: if chunk1 is in use,

chunk2’s first field will be used to store ’user data’ for chunk1 and not the size
of chunk1. We have chosen to represent chunk2 this way as this detail is not
relevant to the discussion.

Size of prev. chunk
Size of chunk1

Injected code

Size of chunk1
Size of chunk2

Old user data

Forward pointer
Backward pointer

chunk1

chunk2

Size of prev. chunk
Size of chunk3

Old user data

Forward pointer
Backward pointer

Size of prev. chunk
Size of chunk4

Old user data

Forward pointer
Backward pointer

Code to jump over
dummy
Dummy

chunk3

chunk4

Lower addresses

Higher addresses
Return address

Saved frame ptr f0

Local var0
Local var0

Figure 2: Heap-based buffer overflow

∗ (chunk2−>fd +12) = chunk2−>bk
∗ (chunk2−>bk +8) = chunk2−>fd

As a result, the value of the memory location that is twelve
bytes after the location that fd points to will be overwritten with
the value of bk, and the value of the memory location eight
bytes after the location that bk points to will be overwritten with
the value of fd. So in the example in Figure 2 the return address
would be overwritten with a pointer to code that will jump over
the place where fd will be stored and will execute code that the
attacker has injected. However, since the eight bytes after the
memory that bk points to will be overwritten with a pointer to fd
(illustrated as dummy in Figure 2), the attacker needs to insert
code to jump over the first twelve bytes into the first eight bytes
of his injected code. This technique can be used to overwrite
arbitrary memory locations.

2.3 Exploiting dangling pointer references

A pointer to a memory location could refer to a memory loca-
tion that has been deallocated either explicitly by the program-
mer (e.g., by calling free) or by code generated by the compiler
(e.g., a function epilogue, where the stackframe of the func-
tion is removed from the stack). Dereferencing of this pointer
is generally unchecked in a C compiler, causing the dangling
pointer reference to become a problem. In normal cases this
would cause the program to crash or exhibit uncontrolled be-
havior as arbitrary locations could be overwritten. However,
double free vulnerabilities are a specific version of the dangling
pointer reference problem that could lead to exploitation. A
double free vulnerability occurs when already freed memory is
deallocated a second time. This could again allow an attacker
to overwrite arbitrary memory locations [4].

2

Size of prev. chunk
Size of chunk1

Old user data

Forward pointer
Backward pointer

chunk1
Size of prev. chunk

Size of chunk2

Old user data

Forward pointer
Backward pointer

chunk2
Size of prev. chunk

Size of chunk3

Old user data

Forward pointer
Backward pointer

chunk3
Lower addresses

Higher addresses

Figure 3: List of free chunks: full lines show a normal list of chunks, dotted lines show the changes after a double free has
occurred.

We illustrate this using dlmalloc in Figure 3. The full lines
in this figure are an example of what the list of free chunks
of memory might look like when using the dlmalloc memory
allocator. Chunk1 is bigger than chunk2 and chunk3 (which are
both the same size), meaning that chunk2 is the first chunk in
the list of free chunks of equal size. When a new chunk of the
same size as chunk2 is freed, it is placed at the beginning of
this list of chunks of the same size by modifying the backward
pointer of chunk1 and the forward pointer of chunk2.

When a chunk is freed twice it will overwrite the forward
and backward pointers and could allow an attacker to overwrite
arbitrary memory locations at some later point in the program.
As mentioned in the previous section: if a new chunk of the
same size as chunk2 is freed it will be placed before chunk2 in
the list. The following pseudo code demonstrates this (modified
from the original version found in dlmalloc):

BK = f r o n t o f l i s t o f s a m e s i z e c h u n k s
FD = BK−>FD
new chunk−>bk = BK
new chunk−>fd = FD
FD−>bk = BK−>fd = new chunk

The backward pointer of new chunk is set to point to
chunk2, the forward pointer of this backward pointer (i.e.
chunk2−>fd = chunk1) will be set as the forward pointer for
new chunk. The backward pointer of the forward pointer
(i.e. chunk1−>bk) will be set to new chunk and the forward
pointer of the backward pointer (chunk2−>fd) will be set to
new chunk.

If chunk2 would be freed twice the following would happen
(substitutions made on the code listed above):

BK = chunk2
FD = chunk2−>fd
chunk2−>bk = chunk2
chunk2−>fd = chunk2−>fd
chunk2−>fd−>bk = chunk2−>fd = chunk2

The forward and backward pointers of chunk2 both point to
itself. The dotted lines in Figure 3 illustrate what the list of free
chunks looks like after a second free of chunk2.

chunk2−>fd−>bk = chunk2−>bk
chunk2−>bk−>fd = chunk2−>fd

But since both chunk2−>fd and chunk2−>bk point to
chunk2, it will again point to itself and will not really be un-
linked. However the allocator assumes it has and the program
is now free to use the user data part (everything below ’size of
chunk’ in Figure 3) of the chunk for its own use.

Attackers can now use the same technique that we previously
discussed to exploit the heap-based overflow (see Figure 2):
they set the forward pointer to point 12 bytes before the re-
turn address and change the value of the backward pointer to
point to code that will jump over the bytes that will be over-
written. When the program tries to allocate a chunk of the same
size again (or tries to free this one), it will again try to unlink
chunk2 which will overwrite the return address with the value
of chunk2’s backward pointer.

3 Model-based countermeasure design
In the previous section we described how heap-based buffer
overflows and dangling pointer references could be exploited
when using dlmalloc. Similar techniques can be used to exploit
these type of vulnerabilities on other allocators. In [10] we
analyzed 5 different memory allocators and showed how these
vulnerabilities could be exploited.

Most countermeasures that have been proposed (see [8] for a
detailed discussion) use an ad hoc approach when trying to pre-
vent vulnerabilities. In [9] we described a more methodologi-
cal approach to countermeasure design by building a model of
the execution environment of a system based on the memory
locations and abstractions that could influence the execution
flow. The model contains all the addresses and abstractions
that could be modified by an attacker to directly or indirectly
influence the execution flow of a program. This information is
supplemented with locations that could lead to indirect pointer
overwriting and contextual information. The contextual infor-
mation describes what the information contained in the model
is used for at a particular place in the execution flow and what
operations are performed on it. Such a model for a particular
platform is called a machinemodel and allows a countermea-
sure designer to build countermeasures at a more abstract level.

By applying this method to dlmalloc, a countermeasure was
designed which protects the memory management information
associated with heap-allocated memory from misuse by using

3

code injection attacks.

3.1 Countermeasure design for heap-based at-
tacks

The datastructures and abstractions that are contained in the
machinemodel are represented by a UML-diagram. Specific
datastructures are represented as classes, its datamembers rep-
resent the datastructures stored in this datastructure and mem-
ber functions denote which operations can be performed on this
memory. The datamembers contain extra information in the
form of specific signs to denote the order and frequency that
particular members can occur in within this structure.

+ denotes that the datamembers in this class are ordered.

- denotes that the order of datamembers in the class does not
matter.

* denotes that the part of memory can occur zero or more
times, other datamembers occur exactly once.

We will first describe a machinemodel for Doug Lea’s malloc
and afterwards this machinemodel will be modified to build our
countermeasure called DistriNet malloc.

3.1.1 Machinemodel for dlmalloc

Figure 4 contains a machinemodel for the heap when using dl-
malloc. The heap contains zero or more malloc chunks and
the order of these chunks differs from program to program (de-
noted by the -* before the malloc chunk). At this level, one op-
eration can be performed: allocate memory for a chunk. Mal-
locchunk represents a chunk, it contains a prevsize and a size
and the allocator has 2 views on chunks, depending on if they
are allocated or not. As such at the top level, 2 operations can
be performed: free and reallocate. Allocated chunks contain
user data and in normal circumstances only a free call should
be called on it. Free chunks contain a forward and backward
pointer which build up a linked list of free chunks. A reallocate
operation can be called on a free chunk so it can be reused by
the program or it can be coalesced into a larger chunk.

3.1.2 Modified machinemodel

On most architectures, code and data are stored in separate
parts of memory and have different properties. By applying
the same principles to separate pointers and control flow infor-
mation from normal data we can protect these from modifica-
tion by code injection attacks. When applied to the heap-based
memory allocator we can separate the management information
from the normal data. This will make the allocator more re-
silient against the earlier described attacks. Figure 5 shows the
new memory layout while Figure 6 is a modified machinemodel
of the dlmalloc-model that describes the way the countermea-
sure works.

For the technical and performance details of the implemen-
tation of this modified allocator we refer the reader to the pre-
sentation or [10].

Heap
R/W, dynamic memory

+*malloc-chunks()
allocate()

mallocchunk
+prevsize
+size
reallocate()
free()
coalesce()

prevsize
32-bit unsigned integer

size
32-bit unsigned integer
+size (29 bits)
+prev_inuse (1 bit)
+mmapped (1 bit)
+unused (1 bit)

usedchunk
+data
free()

freechunk
+forward: pointer
+backward: pointer
+unused (size - 2x pointersize)
reallocate()
coalesce()

data
-*function pointer
-*data pointer
-*array
-*integer
-*char

Figure 4: Machinemodel for the heap when using dlmalloc

Chunkinfo

Text

Data

BSS

Chunks

Hashtable

Stack

H
e
a
p

Non-writable
page

Non-writable
page

Figure 5: New memory layout

4

Heap
R/W, dynamic memory

+*mallocchunk
+non-writable page
+chunkinfo
+hashtable
+non-writable page
allocate()

mallocchunk
+data
reallocate()
free()
coalesce()

data
-*function pointer
-*data pointer
-*array
-*integer
-*char

chunkinfo
hashnext
forward
backward
size
chunk

size
32-bit unsigned integer
+size (29 bits)
+prev_inuse (1 bit)
+mmapped (1 bit)
+inuse (1 bit)

hashtable
+*chunkinfo: pointer
lookup()

Figure 6: Machinemodel for the countermeasure

4 Future Work and Conclusion

An important limitation in our approach, that in general also
applies to related countermeasures, is that it does not protect
pointers stored on the heap that do not belong to the allocator.
This would still allow attackers to either overwrite a function
pointer stored on the heap or allow them to perform an indi-
rect pointer overwrite on a data pointer. This is an important
limitation and we will address this by also separating pointer
information from the rest of the data.

This separation can be accomplished by mapping a memory
area where only pointers will be stored. Pointers for a partic-
ular chunk will be stored sequentially in this area. To access
these pointers, two extra fields would be added to the chunk
information: a ptrcount field (to denote the number of point-
ers in the chunk) and a ptrptr which points to the chunk’s first
pointer in the memory area. These modifications to the mem-
ory allocator require modifications to the compiler so that the
correct pointer is accessed when the program makes use of such
a pointer. However, such a modification would make the use of
the allocator less transparent because it can no longer be dy-
namically deployed: all programs that use the allocator would
need to be recompiled. Moreover, careful analysis is needed
to ensure that the countermeasure does not break existing pro-
grams.

We also plan to apply model-based countermeasure design
to other areas that attackers target for code injection attacks,
like the stack and datasegments. These countermeasures would
also use the idea of separating normal data from execution flow
data. The details of these countermeasures are described in [9].

A next step in the model-based approach is to build a meta-
model which allows the building of machinemodels by system
(but not necessarily security) experts. This reduces the initial
cost of using the approach to build a countermeasure and al-
lows for better collaboration: the person building the model is
not necessarily the person designing the countermeasure. Such
a metamodel will also ensure uniformity of machinemodels
which can be useful when porting countermeasures between
platforms.

The use of machinemodels allows countermeasaure design-

ers to build countermeasures in a more structured manner. The
higher level of abstraction offered by such a model, allows the
designer to focus on the problem while being able to ignore
implementation details until implementation time. We demon-
strated how to apply this model-based design to build a counter-
measure for heap-based code injection attacks. The implemen-
tation of our countermeasure has a negligible impact on per-
formance and memory usage while still being effective against
attacks. It also does not suffer from some of the shortcomings
of other countermeasures (it does not rely on memory secrecy).
The implementation is currently fully operational: it can run
console-based applications, X, gnome, etc... It will be released
during the 22nd Chaos Communication Congress and will be
available for download at http://www.fort-knox.org/.

References
[1] anonymous. Once upon a free(). Phrack, 57, 2001.

[2] BBP. BSD heap smashing. http://www.
security-protocols.com/modules.php?
name=News&file=article&sid=1586, May
2003.

[3] Bulba and Kil3r. Bypassing Stackguard and stackshield.
Phrack, 56, 2000.

[4] Igor Dobrovitski. Exploit for CVS double free() for
linux pserver. http://seclists.org/lists/
bugtraq/2003/Feb/0042.html, February 2003.

[5] Michel Kaempf. Vudo - an object superstitiously believed
to embody magical powers. Phrack, 57, 2001.

[6] Doug Lea and Wolfram Gloger. malloc-2.7.2.c. Com-
ments in source code.

[7] Solar Designer. JPEG COM marker pro-
cessing vulnerability in netscape browsers.
http://www.openwall.com/advisories/
OW-002-netscape-jpeg.txt, July 2000.

[8] Yves Younan, Wouter Joosen, and Frank Piessens. Code
injection in C and C++ : A survey of vulnerabilities and
countermeasures. Technical Report CW386, Departe-
ment Computerwetenschappen, Katholieke Universiteit
Leuven, July 2004.

[9] Yves Younan, Wouter Joosen, and Frank Piessens. A
methodology for designing countermeasures against cur-
rent and future code injection attacks. In Proceedings
of the Third IEEE International Information Assurance
Workshop 2005 (IWIA2005), College Park, Maryland,
U.S.A., March 2005. IEEE, IEEE Press.

[10] Yves Younan, Wouter Joosen, Frank Piessens, and
Hans Van den Eynden. Security of memory allocators
for C and C++. Technical Report CW419, Departe-
ment Computerwetenschappen, Katholieke Universiteit
Leuven, July 2005.

5

